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Abstract 

The main motive of this paper is to develop results for semimodules over special semiring called strict semi domain identical 

to linear spaces over fields. This paper is divided into two parts, in first part we have given some preliminaries.  Also we 

obtain analogue of ring and module theoretic concepts for strict semirings. We prove that basis of a subspace of a semilinear 

space can be extended to the basis of semilinear space.  In second part we prove rank-nullity theorem in semilinear spaces 

over special semiring called strict semidomain. To give examples of finite strict semirings, we have used Lattice theory. 

Keywords: strict semiring, range, kernel, lattice, basis. 

Introduction 

Cuninghame evolved a theory over strict semirings similar to how linear algebra works over fields. [1]. A great deal of 

research on strict semirings is released in [2, 3, 4, 5, 6, 7, 8, 9]. Qian Shu and Wang proved some results about the dimensions 

of semilinear subspaces and direct sums in 2013[10]. Here we proved Rank-Nullity theorem for semimodules over 

special semir ing called strict semidomain similar to that of linear spaces over fields. 

Some preliminaries are given in part 2 and Rank-Nullity theorem in semilinear spaces over strict semiring is proved in part 3. 

Preliminaries   

Definition 2.1[11]: An non-empty set S with the binary operations "+" and "•" represented by (S, +, •)  is called a semiring 

subject to the following conditions 

i) Commutative monoid (S, +, 0) with identity member 0. 

ii) A monoid with identity element 1 is (S, •, 1). 

iii) (a + b) • c = a • c + b • c and a • (b + c) = (a • b) + (a • c), for all a, b, c ∈ �. 

Definition 2.2 [11, 12]: If for every a, b ∈ S, a • b = b • a, then the semiring (S, +, •) is commutative. 

Note that unless otherwise mentioned � is a commutative semiring throughout this paper. 

Example 2.1 [12]: Z0
+, the set containing all positive integers with zero, is a commutative semiring. 

Example 2.2 [12]: Q0
+ ,  the set containing all positive rational numbers with zero is a commutative semiring.  

Theorem 2.1 [12]: Let (ℒ, ∧, ∨) be a distributive lattice. Then ℒ is a commutative semiring. 

Example 2.3 [12]: Let � be a finite semiring, as indicated by the distributive Lattice below. 

      •1 

      • a3 

        a4 •                   • a2 

                                  • a1  

              • 0   

Corollary 2.1 [12]: Every chain lattice is a semiring. 
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Note 2.1 [12]: Every lattice is not a semiring. 

Example 2.4 [12]: Following Lattice ℒ doesnot hold distributive property. Hence ℒ is not a semiring. 

Hasse diagram:              • 1 

         a1•      a2 •       • a3 

                                   • 0 

Definition 2.3 [11]: �, subset of a semiring �.  If � is a semiring, then � is a subsemiring of �. 

Example 2.5 [12]: A subsemiring of the set of non-negative rational numbers is the set of non-negative integers. 

Definition 2.4 [12]: Let � be a semiring then an element a ∈ �, a ≠ 0 is called zero divisor of �  if a • b = 0 for some b ∈ �,  

b ≠ 0. 

Example 2.6: See the semiring � indicated by below lattice  

             • 1 

                    • a2 

        a1   •                   • a3 

                                         • 0  

Here 	
 ≠ 0, 	� ≠ 0 but 	
  •  	� = 0 for a1, a3 ∈ �  i.e. a1 and a3 are zero divisors of  �.  

Example 2.7: Let the semiring �  = Z0
 + × Z0

 +  , (Z0
 + is a set of non negative integers)  has zero divisors as a1 = (5, 0),                  

a2 = (0, 7) ∈ � and  a1 • a2  = (0, 0).   

Definition 2.5[11]: Let � be a semiring. � is said to be a Semidomain if in �, � • � = 0 implies either � = 0 or � = 0 for 

�, � ∈ � (that is  � has no zero divisors). 

Example 2. 8 1) Z0
+ (set of non negative integers) is a Semidomain. 

2) Every Chain lattice is a Semidomain. 

Definition 2.6 [9, 11, 12]: Let the semiring be �. If there is an element β ∈ S for α ∈ S such that � •  �  = � •  �  = 1 then in 

�, � is referred to as an invertible element  while element �, represented by �−1 , is the multiplicative inverse of �.        

Note: In semiring �, U (�) represents the set of all invertible elements.                                       

Definition 2.7 [11]: A commutative semiring � in which every nonzero element has an inverse with respect to multiplication 

is called a semifield. 

Example 2.9 [12] Q0
+ (set of non negative rational numbers) is a semifield. 

Note that every semifield is a semidomain. However, the opposite is untrue.  . 

Example 2.10 Z0
+, the set containing all positive integers with zero is a Semidomain which is not a semifield. 

In case of ring theory, every finite integral domain is a field but in case of semiring, a finite semidomain is not necessarily     

a semifield. 

Example 2.11 Let � be a finite semidomain given by the following Lattice but it is not a field (because multiplicative inverse 

is absent). 
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      •1 

      • a3 

        a4  •                  • a2 

                                   • a1  

              • 0     

Note that 	
 ∙  	
 = 	
 ∙  	� = 	
 ∙  	� = 	
 ∙  	� = 	
. Thus a1 has no multiplicative inverse.  

In fact every finite chain lattice other than C2 is a finite semidoamin but it is not a semifield. 

Definition 2.8 [11, 12]: Let the semiring be �. If � + � = 0 indicates that � = 0 and  � = 0 for �, � ∈ �, then � is referred to 

as a Strict Semiring.    

 Note that strict semiring is also called as zerosumfree semiring. 

Example 2.12 [12]: Z0
+, the set containing all positive integers with zero is a Strict Semiring.  

Example 2.13: Consider a semiring S given by the following lattice 

       • 1  

         a4 •                   • a3 

                                   • a2  

              • a1    

              •0   

Here S is a strict semiring.  

Definition 2.9: Let the semiring be �. If 

i) � + � = 0 indicates that � = 0 and  � = 0 for �, � ∈ � and 

ii) � • � = 0 indicates that � = 0 or � = 0 for �, � ∈ �  

then � is said to be a Strict Semidomain. 

Example 2.14 1) Z0
+, the set containing all positive integers with zero is a strict semidomain. 

 2) Q0
+, the set containing all positive rational numbers with zero is a Strict Semidomain. 

 3) Consider a semiring S indicated by the below lattice 

              •1 

       • a5 

         a4 •                   • a3 

                                   • a2  

              • a1    

              • 
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Then S is a strict semidomain. 

Note that every Chain lattice is a Strict Semidomain. 

Definition 2.10: [12]: Let the two semirings be  � and �ʹ. Semiring homomorphism refers to the mapping �: �  → �' if                      

� (� + �) = �(�) + � (�) and �(� • �) = �(�) • �(�) for every �, � ∈ �. 

 � is a semiring isomorphism if � is one one and onto map. 

Definition 2.11 [11, 12]: Let the strict semiring be �. The function � × � → � represented by (s, m) → s m, is known as 

scalar multiplication and it is commutative monoid (�, +) with additive identity 0� for which which we have the following 

requirements for all elements s, s'∈ � and all elements m, m' ∈ � 

1) (s s') m = s (s' m) 

2) s(m + m') = s m + s m' 

3) (s + s') m = s m + s' m 

4) 1S m = m  

5) s 0� = 0�  = 0s m 

Example1 2.15: 1) Let �  be a semiring. The cartesian product � × � × …×  � (n times) = �n such that (x1, x2,… xn), (y1, 

y2…, yn) in �n, �∈ � under the addition (x1,  x2 ,…., xn ) + (y1,  y2,…., yn ) = (x1+ y1,  x2+  y2,…., xn+ yn ). 

and scalar multiplication  � (x1,  x2 ,…., xn ) = (�x1,  �x2 ,…., �xn )  is a semimodule over � . 

2) Let � = Z0
+ × Z0

 + × … × Z0
 + (m times) then �  is a Z0

 + -Semimodule (Z0
 + is a set of non negative integers). 

3) Let Cn be a chain Lattice then � = Cn× Cn×… × Cn (m times) is a semimodule over Cn and � is denoted by ��� . 

Definition 2.12[11]: If and only if ℕ is closed under addition and scalar multiplication and ℕ contains additive identity 0  then 

a non-empty subset ℕ of a � -Semimodule � is a subsemimodule of �.  

Definition 2.13 [11]: If for m, mʹ ∈ �  with m + mʹ ∈ ℕ and m ∈ ℕ then mʹ ∈ ℕ is subtractive subsemimodule of a � −
Semimodule �  .  
Definition 2.14 [11]: If � and ℕ are �-Semimodules over a strict semiring �  then a map ∅ : � → ℕ is an �-homomorphism 

if the following constraints are fulfilled. 

i) For every m, mʹ ∈ �, ∅ (m + mʹ) = ∅ (m) + ∅ (mʹ). 

ii) For every m ∈ � and every s ∈ � , ∅ (sm) = s∅ (m). 

iii) ∅ (0) = 0. 

Definition 2.15: The set {m∈ �/ ∅ (m) = 0} is called kernel of ∅ (ker∅) and the set { ∅ (m) /m∈ �} is called range of ∅ 

where �, ℕ are �-semimodules and ∅ : � → ℕ  is an �- homomorphism. 

Note that ker∅  and range of ∅ are subsemimodules of � and ℕ respectively. 

Theorem 2.2: ker∅ is subtractive subsemimodule of �. 

Proof: Let m∈ ker∅ and n ∈ � such that m + n ∈ ker∅. 

Then ∅(m) = 0, ∅(m + n) = 0 = ∅(m) + ∅(n) 

Therefore ∅(n) = 0. 

Hence, n ∈ ker∅. 

Definition 2.16[9]: The semimodule � over strict semiring �  is called an �-semilinear space. 

A subspace of an �- semilinear space is the subsemimodule of semimodule � over strict semiring �.  

Unless otherwise mentioned semiring � is assumed to be semidomain.  

Note 2.2: Semilinear space elements are called vectors. 
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Definition 2.17[9, 12]:  A subset A of a semilinear space � over a strict semiring � is said to  form spanning set of � , if 
every V in � is a linear combination of vectors V1, V2,…, Vm ∈ A that is there exists scalars a1, a2,…, am in � such that V = 

a1V1 + a2V2 +….+ amVm. 

Note 2.3: Spanning set of a semilinear space � is also called generating set of �.  � is called finitely generated semilinear 

space if it has finite spanning set. 

Definition 2.18[9, 12]: The vectors of a semilinear space � over strict semiring � are called linearly independent, if none of 

them can be represented as linear combination of the remaining others. Otherwise these vectors are linearly dependent.  

Definition 2.19[9, 12]: Let A be a linearly independent subset of a semilinear space � over the strict semiring �. A is referred 

to as a basis of the semilinear space � if it spans the semilinear space �. 

For a semiring � we have defined �n  as follows 

 �n = �  × � ×….× � (n times) is a semilinear space over strict semiring �, under the following addition and scalar 

multiplication: 

For X =(x1,  x2,…., xn ), Y =(y1,  y2,…., yn ) ∈ �n and � ∈ �, 

X + Y = (x1,  x2 ,…, xn ) + (y1,  y2,…, yn ) = (x1+ y1,  x2+  y2,…., xn+ yn ). 

and � X = � (x1,  x2 ,.…, xn ) = (�x1,  �x2 ,.…, �xn ). 

Proposition 2.1: Let � be a strict semidomain. If /, 0 ∈ �n and   / +  0 =  0 then / =  0, 0 =  0. 
Proof: Let / = (3
, 3�, … , 3� ), 0 = (6
 , 6� , … , 6� )  ∈  �� 

      ∴  / + 0  = (3
, 3�, … , 3� ) + (6
, 6�, … , 6� ) 

                          =  (3
 +  6
, 3� +  6�, … , 3� +  6� ) 

         =  (0, 0, … , 0)       
Therefore 38 +  68  =  0, for all 9 =  1, 2, … , < implies  38 = 0 , 68 = 0 for all i and hence, / =  0, 0 =  0. 

Also if V1, V2, …,Vk ∈ �n  then 

1

0
k

i i

i

Vα
=

= implies that 0
i i
Vα =  for all i. 

 Therefore 0
i

α = or 0
i

V = . 

Note 2.4[9, 12]: In �-semilinear space, the number of elements in each basis may vary. 

Definition 2.20[9]: A free �-semilinear space is an �-semilinear space which has a basis over �, where � is a strict semiring. 

Definition 2.21[9]:  In an �-Semilinear space �n, two elements ( )1 11 12 1, , ..., nV v v v= , ( )2 21 22 2, , ..., nV v v v= ∈ �n  are 

said to be orthogonal if  V1 V2
T =  [ ]11 12 1... nv v v

21

22

2n

v

v

v

 
 
 
 
 
 

M  = 0 and V1 V1
T , V2 V2

T ∈ U(�). 

Let V1, V2,…, Vm ∈ �n. If Vi Vj
T = 0 for all i ≠ j and Vi Vi

T ∈ U(�), 1 i n≤ ≤ ,1 j n≤ ≤ then the set {V1, V2,..., 

Vm } is said to be orthogonal.  

Theorem 2.3[9]: An orthogonal subset of an �-semilinear space �n over strict semiring � is linearly independent. 

Note 2.5 The set {e1, e2,…, en},where e1 = (1, 0,…,0n), e2 = (0, 1,…, 0n), …,en =   (0, 0,…,1n) is an orthogonal subset of �n. 

Therefore the set {e1, e2,…, en} is linearly independent (by theorem 2.3). Also {e1, e2,…, en} spans �n and hence it is a basis 

of �n. {e1, e2,…, en} is called as standard orthogonal basis of �n. 
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Definition 2.22[9]: If s = � + � implies that s = � or s = �, for all �, � ∈� then s ∈ � is called an additive irreducible element 

of  � , where � is a strict semiring.  

Theorem 2.4[9]: In �n, each basis has the same number of elements if and only if 1 is an additive irreducible element, where  
�n is a semilinear space over strict semiring �. 
Corollary 2.2[9]: 1 being additive irreducible element in strict semiring � , =/
  , /�  , … , /� ,>  is a basis of �-Semilinear space 

�n if and only if, /
 =  (3

, 0, … ,0), /� =  (0, 3��, … ,0), … , /� =  (0,0, … , 3��), with xii ∈ U(�) for any i,1 i n≤ ≤  

Corollary 2.3[9]: If U (�) = {1} then {e1, e2,…, en } is the unique basis of �n , where �n be a semilinear space over strict 

semiring � with 1 as an additive irreducible element.  

Note that in corollary 2.2 for all xii ∈ U(�) = {1} means xii =1. Therefore each Xi = ei , 1 i n≤ ≤ . 

Definition 2.23[9]:  If any two bases of a free semilinear space � over strict semiring � have the same number of elements 

then the number elements in a basis is the dimension of � over � and is represented by ?9@� �.  

Note that any two bases of �n have the same number of elements only when � is a strict semiring with 1 as an additive 

irreducible element. Therefore, ?9@�(��) =  <.  

Theorem 2.5[9]: A set =/
  , /�  , … , /� ,> is a basis of �n if and only if it is orthogonal, where �n be n-dimensional Semilinear 

space over a strict semiring 

. 

Corollary 2.4[9]: In �n, the number of elements in every orthogonal set is not more than n where �n is n-dimensional �-

Semilinear space.  

Note 2.6: As � is finite strict semidomain, �n and every semilinear subspace � of �n is finite. Thus � has finite generating 

set which implies it has a basis. Therefore every semilinear subspace of �n is free. 

Example 2.16: Chain Lattice C3 indicated as below is a Strict Semiring (Every Chain lattice is a Strict Semiring) . 

   C3 = {0, �, 1}  

     • 1 

     • � 

• 0  

Semilinear space over C3:  

��� = { (0, 0, 0) , (0, �, 1), (0, 1, �), (�, �, 1), (�, 1, �),  (1, �, 1), (1, 1, �), (�, 1, 1), (1, �, �), (1, 0, �), (1, 1, 0), (0, 1, 1), (1, 

1, �) (0, �, 0), (0, 0, �), (�, 0, 0), (�, �, 0), (�, 0, �), (0, �, �), (�, �, �), (0, �, 1),   (�, 1, 0), (�, 0, 1), (1, �, 0), (1, 1, 1), (1, 

0, 0), (1, 0, 1)}. 

Basis of ABB : {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. 

Dimension of ABB : dim ��� = 3.  

Subspaces of Semilinear space ABB  over C3:  

U1 = {(0, 0, 0), (�, 0, 0), (1, 0, 0)}. 

Basis of CD: {(1, 0, 0)}. 

Dimension of  CD: dim CD= 1.  

U2 = {(0, 0, 0), (0, 0, 1), (1, 0, �), (�, 0, 1), (1, 0, 1), (0, 0, �), (�, 0, 0), (�, 0, �), (1, 0, 0)}. 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 8 2024

Page No: 6



  

Basis of CE: {(1, 0, 0),), (0, 0, 1)}. 

Dimension of  CE: dim CE= 2.  

Example 2.17: Let S be a Strict Semiring given by the following lattice. 

 

 

Here S = {0, a1, a2, a3, a4, 1}. 

Semilinear space over S: 

S5 = {(x1, x2, x3, x4, x5)/x1, x2, x3, x4, x5 ∈ S}. 

Basis of S5: {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}. 

Dimension of S5: dim S5 = 5.  

Subspaces of Semilinear space S5 over S: 

i) T1 = {(p, p, q, 0, t)/p, q, t ∈ S} is the subspace of Semilinear space S5 over S. 

T1 = ⟨ (1, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1) ⟩. 

Also {(1, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)} is an orthogonal set and hence  basis of T1. 

Therefore, dimension of T1 is 3. That is, dimT1 = 3. 

ii) T2 = {(0, l, m, n, 0)/l, m, n ∈ S} is the subspace of Semilinear space S5 over S. 

Also ⟨0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0) ⟩ is an orthogonal set and hence  basis of T2. 

Therefore, dimension of T2 is 3. That is, dimT2 = 3. 

Definition 2.24[14]: T: �n →  �m be a linear transformation which fulfills the constraints  

i) T (X1 + X2) = T (X1) + T (X2), X1, X2 ∈ �n 

ii) T (aX) = a T (X), a ∈�, X∈ �n 

Constraints (i) and (ii) are equal to just one constraint 

T (aX1+bX2) = a T (X1) + b T (X2), a, b ∈�,  X1, X2 ∈ �n 

Definition 2.25[14]: T: �n →  �m be a linear transformation for which kernel is the set of all vectors X ∈ �n such that T(X) 

= 0. 

Definition 2.26[14]: T: �n →  �m be a linear transformation for which range is the set of all vectors X' ∈ �m such that T (X) 

= X' where X ∈ �n . 

Theorem 2.6[14] If T: �n →  �m be a linear transformation then kernel and range of T are semilinear subspaces of �n.  

Proposition 2.2 Let  �n be a finite dimensional semilinear space over a strict semiring �, T: �n →  �n be a linear 

transformation and U + V ∈ kerT then U, V ∈ kerT. 

Proof: Let U + V ∈ kerT. It means T (U + V) = 0     
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But T (U + V) = T (U) + T (V). Therefore, T (U) + T (V) = 0 which implies that T (U) = 0, T(V) = 0 (By proposition 2.1) 

Hence, U, V ∈ kerT 

Thus, U + V ∈ kerT implies that U, V ∈ kerT. 

Proposition 2.3: Let T: �n →  �n be a linear transformation and e1, e2,.…, en be a standard basis of �n then kerT = �k, k ≤ <. 

Proof: Let X ∈ kerT implies that X ∈ �n which implies that T (X) = 0. 

Take X = 

1

n

i i

i

eα
=

 . 

ie. T (X) =

1

( ) 0
n

i i

i

T eα
=

= . 

Therefore �i = 0 or T (ei) = 0 for all i. 

If  �i ≠ 0 then ei ∈ kerT 

Therefore for all X ∈ kerT, all ei involved in linear combination of X belongs to kerT  

Hence we can take kerT = 〈e
, e�, . … , eJ〉. 

That is kerT = �k , k ≤ <. 

Definition 2.27[14]: The dimension of range of a linear transformation T is referred to as a rank and it is represented by Rank 

(T). Also the dimension of kernel of a linear transformation T is referred to as a nullity and represented by Nullity (T).  

Hamming Weight: Let X ∈  �n, X = (x1, x2,……., xn) then w (X) = Number of non-zero xi,1 i n≤ ≤ . 

Example 2.28: Let X ∈  �5, X = (2, 0, 3, 0, 1) then w(X) = 3. 

Rank-Nullity theorem in semilinear spaces over strict semidomain  

Theorem 3.1 Let S be a finite strict semidomain and T: Sn → Sn be a linear transformation such that 〈L(/), L(0)〉= 0, if 

〈/, 0〉= 0 for X, Y ∈ Sn. Then Rank (T) + Nullity (T) = n. 

Proof: Let {e1, e2, . . . , en} be a standard orthogonal basis of Sn.  

Case (i) Let T (ei) = 0 for all i.  

Then ker (T) = Sn and Im (T) = 0.  

Therefore, Rank (T) = 0 and Nullity (T) = n.  

Thus, Rank (T) + Nullity (T) = n.  

Case (ii) Let T (ei) ≠ 0 for all i. 

 Then {T (e1), T(e2), . . . , T(en)} is orthogonal subset of Sn as 〈M8 , MN〉= 0  

Implies 〈L(M8), L( MN )〉= 0  for 9 ≠ O.  

Hence orthogonal basis of ImT =〈L(M
), L(M�), … . . , L(M�) 〉. 
Therefore, Rank (T) = n.  

In this case, ker (T) = 0 and hence Nullity (T) = 0.  

 Thus, Rank (T) + Nullity (T) = n. 

Case (iii) Let L(M8) ≠ 0 for 1 ≤ i ≤ k.  

L(M8) = 0 for k + 1 ≤ i ≤ n. 

 Then ImT =〈L(M
), L(M�), … . . , L(MP) 〉. 
As in case (ii) {T (e1), T (e2), . . . , T (en)} is an orthogonal basis of Im(T).  

Hence Rank (T) = k.  

Now T (ei) = 0 for k + 1 ≤ i ≤ n giving that 〈MPQ
, MPQ� , … . . , M� 〉⊂ ker (L). 

Let X ∈ ker (T) which implies that / = ∑ 38 �8U
 M8. 
Therefore L(/) = ∑ 38 �8U
 L(M8) = 0. 
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Thus 38 L(M8) = 0 for all i, 1 ≤ i ≤ n.  

For 1 ≤ i ≤ k, L(M8) ≠ 0 giving that xi = 0, 1 ≤ i ≤ k.  

Thus, Nullity (T) = n − k.  

Hence Rank (T) + Nullity (T) = k + n − k = n. 

Theorem 3.2 Let � be a finite strict semidomain, 1∈ �  is an additive irreducible element, 1 + 1 = 1, U (�) = 1 and T: �n ⟶ 

�n be a linear transformation. If V1, ……., Vk is an orthogonal basis of range of T with w (Vi) = wi , w1 + w2 +……..+ wk = m 

then Rank (T) + Nullity (T) = k + n - m. 

Proof: Let {e1, e2, ……., en} be a standard orthogonal basis of �n. 

Now {V1, …, Vk} is an orthogonal basis of range of T and hence without loss of generality we can assume 

V1 = W1, 1, … , 1XY , 0, … ,0Z 

V2 = W0, 0, … , 0XY , 1, 1, … , 1X[ , 0, … ,0Z 

⋮ 

Vk = W0, 0, … , 0XY , 0, 0, … , 0X[ , … ,0, 0, … , 0X]^Y , 1, 1, … , 1X] , 0, … ,0Z 

Let M = 

1

2

k

V

V

V

 
 
 
 
 
 

M
 and X = (x1, x2,…, xn) ∈ kerT. 

 LℎM`Mab`M, T (X) = MXT = 0 

It means T (X) = 

1

2

k

V

V

V

 
 
 
 
 
 

M

1

2

n

x

x

x

 
 
 
 
 
 

M
= 0 

         T(X) =

1 2

1 2

1 2

1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 0

k

k

k

w w w

w w w

w w w

 
 
 
 
 
 

L L L L L

L L L L L

M M M M M M M M M M M M M M M

L L L L L

1

2

n

x

x

x

 
 
 
 
 
 

M
= 

0

0

0

 
 
 
 
 
 

M
 

Thus, T (X) =

1

1 1 2

1 2 1 1 2

1 2

1

... 1 ...

...

...

...
k k

w

w w w

w w w w w w

x x x

x x

x x
−

+ +

+ + + + + + +

+ + + 
 

+ + 
 
 

+ +  

M
= 

0

0

0

 
 
 
 
 
 

M
 

Which implies that
11 2 . .. 0wx x x+ + + = ,  

1 1 21 ... 0w w wx x
+ +

+ + = ,  
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1 2 1 1 2. . . 1 . . .
. . . 0

k kw w w w w w
x x

−+ + + + + + +
+ + =  

Since � is a strict semiring, hence 

1 1 2 1 2 1 1 21 2 .... 1 ...... ... 0
k kw w w w w w w w wx x x x x x x

−+ + + + + + +
= = = = + = = = =  

But w1 + w2 +…+ wk = m 

Therefore, x1 = x2 = …= xm = 0. 

Thus, X = (0,…, 0m, xm+1,…,xn). 

Hence X ∈ kerT implies that X = 

1

n

i i

i m

x e
= +

  

Also each ei ∈ kerT for m + 1 ≤  i ≤ n 

Therefore, cM`L = 〈M�Q
, M�Q�, … , M�〉. 
Thus, dM�Q
, M�Q�, … , M�e is a basis of kerT. 

Hence dim (kerT) = n - m 

Therefore, dim (Range T) + dim (ker T) = k + n – m. 

That is Rank (T) + Nulity (T) = k + n – m (by definition 3.12). 

Example 3.1 Let T: S5 → S5 be a linear transformation on semilinear       space S5 defined as T (a1, a2, a3, a4,   

a5) = (a1, a1, a1, a2, 0). 

 Then we can write T (a1, a2, a3, a4, a5) = (a1, a1, a1, a2, 0) = a1 (1, 1, 1, 0, 0) +   a2 (0, 0, 0, 1, 0). 

 Denote V1 = (1, 1, 1, 0, 0) and V2 = (0, 0, 0, 1, 0). Here f
f�g = 0. 

 Therefore, the set {V1, V2} is orthogonal set. Hence it is linearly independent.  

 Also the set {V1, V2} spans range of T. Therefore, it is a basis of range T.  

 Thus, dim (RangeT ) = 2. 

 Here w(V1) = 3 and w(V2) = 1. Therefore, m = w(V1) + w(V2) = 4. 

 Let h = i1 1 1
0 0 0   0 0

1 0j  and  k = (l
, l�, l�, l�, lm) ∈ cM`L. 
 Therefore, T (B) = MBT  = 0. 

 Implies that nl
 + l� + l�
l�

o = i0
0j 

Therefore, b1 + b2 + b3 = 0, b4 = 0. 

 Since S is a strict semiring. It implies that b1 = b2 = b3 = b4 = 0.  

                                                                                                                 Thus, X = (0, 0, 0, 0, x5). Hence kerT = ⟨ (0, 0, 0, 0, 1) ⟩. 
Therefore, dim (kerT ) = 1. 

Thus, dim (RangeT ) + dim(kerT ) = 2 + 1 = 3 and k + n − m = 2 + 5 − 4 = 3.  

Hence the result. 

Corollary 3.1 Let � be a finite strict semidomain, �n
 be a finite dimensional �-semilinear 

space, T: �n ⟶ �n be a linear transformation. If {V1, V2, …, Vk} is an orthogonal basis of 

RangeT with w(Vi) = 1, for all i then Range T = �k and Rank (T) + Nullity (T) = n. 

Proof: Let �n
 be a finite dimensional �-semilinear space and {e1, e2,…,en} be a standard orthogonal 

basis of �n. Also T: �n ⟶ �n be a linear transformation and range of T is a semilinear subspace of 

�n (by theorem 2.6). 
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{V1, V2…, Vk} is an orthogonal basis of RangeT and w (Vi) = 1, for all i. 

Then  p
 +  p� + ⋯ +  pP = c. 
Hence Range T = �k . 

Thus, dim (RangeT) + dim (kerT) = k + n – k = n. 

That is Rank (T) + Nullity (T) = k + n – k = n (by definition 2.27). 

Conclusions: In this contribution we have identified certain semirings and proved Rank-Nullity theorem in semilinear spaces 

over special semiring called strict semiring. 
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