
Analysis of Unreliable Bulk Queue with 

balking and Bernoulli Vacation Schedule 
 

Binay Kumar
1”*”

, Dinesh Bhaskar
2 

1* Department of Mathematics, Patna University, Patna, India. Email id: bkmathasr@gmail.com. 
https://orcid.org/0000-0002-8895-8672 

2  Department of Mathematics, Patna University, Patna 

Abstract: In this paper, we examine a queueing model where units arrive in randomly 

sized groups. The server processes all arriving units through a two-phase service, 

completing one phase before proceeding to the next. After completing both phases, the 

server may take a vacation of random duration with probability p. Additionally, the 

server is susceptible to random failures during any phase of service. Upon failure, it is 

sent for repair, after which it resumes operation as good as new. The arriving units 

exhibit impatience and may balk from the system without receiving service. We employ 

the supplementary variable technique to derive explicit expressions for various 

performance measures. A numerical illustration is provided to analyze the sensitivity of 

these performance measures. 

1. Introduction 

 In recent years, stochastic queueing models with server vacations have gained significant 

attention for analyzing congestion issues and modeling various systems, including 

flexible manufacturing, production, and telecommunications. 

In many real-world scenarios, servers may experience unexpected failures while 

processing units require immediate repair. Additionally, system breakdowns and repair 

periods can lead to fluctuations in arrival rates. This phenomenon is commonly observed 

in call centers, where sudden service interruptions due to system failures can cause 

waiting customers to leave without being served, ultimately impacting overall 

performance and efficiency. Similar disruptions occur in production and flexible 

manufacturing systems, where server breakdowns halt operations, increasing system load 

and affecting productivity. 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 25 ISSUE 6 2025

PAGE NO: 1

mailto:bkmathasr@gmail.com
Tanoy
Textbox



Time and cost are critical factors that significantly impact the efficiency and 

progress of manufacturing and production systems. These systems often encounter 

challenges in delivering optimal output while ensuring smooth operations. In industrial 

settings, customer arrival rates can fluctuate due to factors such as seasonal demand 

variations or unexpected machine failures.   

 

In such situations, customers waiting for service may either leave the system or 

switch to an alternative provider that offers faster and more cost-effective solutions. This 

phenomenon is evident in various sectors, including supply chain management and 

transportation systems, where delays caused by traffic congestion or logistic disruptions 

can affect overall efficiency.   

A similar issue arises in airline operations. For instance, passengers waiting at an 

airport may experience delays due to sudden technical issues with an aircraft. If the delay 

is prolonged, some passengers may opt to book an alternative flight with a different 

airline to reach their destination on time. Such instances not only impact customer 

satisfaction but also affect the operational efficiency of the airline. 

2. Review of literature 

Customer impatience in queueing systems is a critical modeling feature with applications 

in call centers, network services, and customer-facing operations. It has been addressed 

through a wide variety of models and analytical techniques. Perel and Yechiali [1] 

analyze an M/M/c queue in a two-phase Markovian environment, where customer 

impatience during the slower service phase significantly degrades performance. Wang et 

al. [2] extend this analysis to the machine repair setting, incorporating balking behavior 

and variable server configurations to optimize service cost, bridging queueing theory with 

operations management. Selvaraju and Goswami [3] investigate M/M/1 queues with 

working vacations, offering closed-form results for both single and multiple vacation 

schemes. Transient dynamics are tackled by Ammar [4], who uses explicit methods to 

study a two-server heterogeneous queue with impatience. Kim and Kim [5] contribute a 

model with Markov-modulated service rates and age-based impatience, providing 

transient performance distributions suitable for dynamic environments. Ammar [6] also 
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refines transient analysis for an M/M/1 vacation queue with a waiting server and 

impatient customers, focusing on adaptive service policies. From a design perspective, 

Fu-Min et al. [7] develop a retrial model involving unreliable servers, customer feedback, 

and impatience, optimized using hybrid heuristics. Morozov et al. [8] explore multiclass 

retrial queues with balking and constant retrial rates, employing regenerative and matrix-

analytic approaches validated by simulation. Finally, Chai et al. [9] study a many-to-

many matching system incorporating customer impatience, applicable to platforms such 

as ride-sharing services. 

Vacation policies model service interruptions due to rest, maintenance, or managerial 

decisions. Their effect on performance has been explored under various probabilistic and 

dynamic frameworks. Maraghi et al. [10] propose a model with batch arrivals, optional 

second services, and Bernoulli vacations, illustrating how stochastic scheduling balances 

stability and interruption risk. Rajadurai et al. [11] examine retrial queues with Bernoulli 

vacations and orbital search behavior, emphasizing adaptive control under heavy traffic. 

Liu and Wang [12] investigate how Bernoulli vacations affect equilibrium joining 

strategies in Markovian queues. Bouchentouf et al. [13] consider working vacations with 

reneging and customer retention under Bernoulli interruptions, demonstrating how partial 

service during vacations reduces abandonment. Vacation interruptions are further studied 

by Laxmi and Seleshi [14], who introduce changeover times and optimize batch-service 

systems using genetic algorithms. A transient analysis of such models is provided by 

Vijayashree and Janani [15]. Xu et al. [16] developed a queueing-inventory model with 

delayed Bernoulli vacations, where vacation initiation depends on inventory levels. Singh 

et al. [17] incorporate state-dependent arrivals and fixed-duration vacations, tuning 

policies to match traffic variability. Jain and Bhagat [18] unify vacations, retrials, and 

delayed repairs in a comprehensive model that manages multiple uncertainties 

simultaneously. 

Mohan Kumar and Siva Kumar [19] apply metaheuristic optimization to an M/M/1 

system with multiple working vacations, unreliable servers, and feedback. Mehandiratta 

and Verma [20] present a model with probabilistic reneging and feedback during working 

vacations, using analytical tools to assess sensitivity. Finally, Jain and Bhagat [21] study 
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a two-phase system with finite capacity and hybrid vacation schemes, revealing 

performance trade-offs in complex operational settings. 

Queueing systems with unreliable servers model failure-prone environments common in 

telecommunications, healthcare, and computing. Kumar and Arumuganathan [22] studied 

an MX/G/1 retrial queue with active breakdowns and two-phase repairs, incorporating 

both patient and impatient behavior during server failures. Choudhury and Medhi [23], 

while focusing on multiserver systems with balking and reneging, provide 

complementary insights relevant to unreliable environments. Jain et al. [24] introduce an 

unreliable M/M/2/K queue controlled via an (N,F)-policy, including startup delays and 

optional repairs, and analyze transient states using matrix methods. Bhagat and Jain [25] 

examine a retrial queue with setup times before repair, optional second services, and 

unreliable servers, using generating functions for performance analysis. Jain and Gupta 

[26] consider redundant systems with warm standbys and switching failures, 

incorporating fuzzy inference into reliability evaluations. Ayyappan and Karpagam [27] 

investigate a queue with an unreliable main server and non-Markovian bulk service, 

supplemented by a standby server during breakdowns. Singh et al. [28] analyze a bulk 

arrival retrial queue influenced by negative customers that trigger server unreliability, 

modeling delayed repairs and additional service options. Saravanan et al. [29] studied a 

Markovian multi-server retrial system with synchronized vacation-based maintenance 

and discouraged customers, using QBD and matrix-geometric methods. Lastly, Kumar et 

al. [30] propose a healthcare queue with a single unreliable server and retrials, 

distinguishing urgent and non-urgent patients. By applying genetic algorithms and 

particle swarm optimization, the model provides cost-efficient solutions for overloaded 

systems. 

 In many practical queueing scenarios, the presence of balking, optional server vacations 

and server unreliability motivates the development of queueing models that incorporate 

batch arrivals and account for both regular and optional service periods under server 

unreliability. 
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 This study is organized into several key sections. Section 3 introduces the model in 

detail, outlining the underlying assumptions and defining the necessary notations. In 

Section 4, the fundamental equations governing the system are developed using 

supplementary variables, along with the corresponding boundary conditions. Section 5 is 

dedicated to the analytical investigation of the model, focusing on both transient and 

steady-state behaviors of the queue length distribution through the application of Laplace 

transforms and probability-generating functions. Section 6 derives important performance 

metrics of the system. Section 7 provides numerical results and sensitivity analyses, 

evaluating how changes in system parameters affect various performance metrics. Graphs 

are used to illustrate the impact of different parameters on the average queue length, 

while tables present the effects of arrival and service rates on both the average number of 

units in the queue and the average waiting time. Finally, Section 8 presents the 

conclusions, highlighting the novel features and outlining the future scope of the 

proposed model. 

 

3. Model Description 

In many real-world scenarios, the flow of entities requiring service is influenced by the 

efficiency of the service facility. When the system experiences downtime due to 

maintenance or unexpected failures, the arrival process may be disrupted. For instance, in 

smart traffic management systems, if traffic signals malfunction or road maintenance 

causes lane closures, vehicles may be forced to reroute, leading to congestion and delays. 

Similarly, in online customer service platforms, if response times are slow due to high 

server load or temporary outages, users may abandon their requests and seek alternatives. 

Such situations also arise in ticket booking systems for concerts or sports events, where 

slow processing or website crashes can lead customers to explore other options. By 

incorporating the balking nature of units, this study provides a more practical approach, 

demonstrating the model’s relevance across various real-life applications. 

To study this type of queuing problem, we examine a single-server system 

featuring an unreliable server, under the assumption that all internal stochastic processes 
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function independently. The system receives batch arrivals that follow a Poisson process 

with specified rates  ,
1


2


3

  depending on whether the server is idle, busy, on 

vacation, or experiencing a breakdown respectively, where
321

and,   denote the joining 

probability during busy state, vacation state or repair state. The number )0(n  indicates 

the number of customer in queue. The server is subject to random failures, occurring at a 

rate , and is subsequently repaired at a rate ; both the operational and repair durations 

are modeled as exponentially distributed random variables. Let dvv
i

)( denote the 

conditional probability that the thi  stage of service is completed within the interval 

),( dvvv  , given that v  units of time have already elapsed. Similarly, let the dvv)(   denote 

conditional probability of completing a vacation within a small interval ),( dvvv  , given a 

current vacation duration v , be represented accordingly. After finishing the second phase 

of service for a unit, the server may take a vacation of random duration V  with a certain 

probability p. The time-to-completion for both the service and the optional vacation is 

characterized using hazard rate functions. 
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4. Governing Equations  

 

To analyze the non-Markovian nature of the model, the supplementary variable technique 

is employed to transform it into a Markovian framework. This is achieved by introducing 

an additional random variable representing the elapsed time of a generally distributed 

service time. Following the probabilistic approach outlined by Cox (1955), a set of 

differential-difference equations is formulated for the various states of the system. To 

evaluate the steady-state performance measures, the Chapman-Kolmogorov equations are 

constructed, accounting for state-dependent arrival rates and a two-phase service 

mechanism, as outlined below: 
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5. Mathematical Analysis    

In the stochastic modeling of queuing systems, mathematical analysis plays a crucial role 

in evaluating various performance metrics under specific assumptions. Through a 

comprehensive performance analysis, we gain insights into the system's behavior and 

efficiency. 

In this section, we utilize the probability-generating function technique to derive queue 

size distributions across different scenarios, considering the server's varying operational 

states. Additionally, we examine both transient and steady-state behaviors of the model at 

random time points. 

 For computation purpose, we use the following notation throughout the paper. 
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Theorem 1: The probability generating functions corresponding to the transient state at a 

random time, when the server is engaged in service, on vacation, or undergoing repair, 

are respectively expressed as follows: 
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Proof: For proof see Appendix-A. 

 

Theorem 2: The steady-state probability generating functions observed at a random point 

in time, corresponding to the server being in service, on vacation, or under repair, are 

respectively represented as follows: 
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Proof: For proof see Appendix-B. 
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Theorem 3: The probability generating function of the number of units in the queue at a 

random epoch is given by  
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Proof:  On adding the equations (34)-(37), we get the required equation (38).  

 

6.Performance Measures  

 

Performance metrics are essential for examining the behavior of the system when 

creating a new one or improving an existing queueing model. These steps aid in locating 

and controlling blocking and delays that are frequently seen in actual traffic situations. 

Because queueing systems are widely used in both everyday and industrial processes, 

system performance can differ greatly depending on the circumstances. In this section, 

we use the previously obtained probability generating functions to derive explicit 

expressions for key performance indicators, specifically the average number of units in 

the queue. 

(i) Average number of units in the queue (system)  
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By substituting the results of equations (40)-(43) in equation 

2

1
))1("(

)1(')1(")1(")1('
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D

NDND
zP

dz

d
L

z

q


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










          (44) 

we get the required result of the average number of units in the queue. 

(ii) Average waiting time of the units in the queue  

 

The average waiting time )( qW  of the units in the queue can be determined by using 

equation (2.19) with ).1()1())1()1((
32

)2()1(

1
QMILL

e
   

 

7. Numerical Illustration and Sensitivity Analysis 

 

The average number of units and average waiting time that were determined analytically 

in the preceding part are validated numerically in this section. The batch size of the units 

is assumed to follow the geometric distribution with first and second moments as 

provided in equation in order to assist the numerical results. 

a

b
XE )( , 

2

2 )1(
)(

a

bb
XE


 ; ,1 ab   .10  a           (45) 

The service time distribution is assumed to follow exponential distribution with 

parameter )2,1( ii s and the server in optional vacation state with parameters   is also 

exponentially distributed. The first and second moments are defined as 

.2,1;
2

)(,
1

)(
2

2  iBEBE

i

i

i

i


                                                                             (46) 

Further, )(iB and )(' iB can be obtained by using  
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i

i
iB







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2

i

i
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







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 Also 



1
)( VE and

2

2 2
)(


VE .                                                                                        (48) 

Table 1: Effects of  and  on 
qL and 

qW   

 

  

6  2.6  4.6  

qL  qW  qL  qW  qL  qW  

0.38 19.31 19.79 16.05 16.36 13.74 13.95 

0.39 22.67 22.72 18.39 18.34 15.49 15.38 

0.4 27.15 26.64 21.35 20.84 17.62 17.12 

0.41 33.45 32.13 25.22 24.10 20.27 19.28 

0.42 42.94 40.41 30.47 28.53 23.66 22.05 

0.43 58.85 54.31 38.03 34.90 28.14 25.71 

0.44 91.09 82.45 49.82 44.85 34.37 30.79 
 

Table 2: Effects of  and  on qL  

 

  

4.6  6.6  8.6  

qL  qW  qL  qW  qL  qW  

3 21.35 20.84 20.44 19.90 19.63 19.08 

3.2 25.80 25.35 24.45 23.97 23.29 22.78 

3.4 32.26 31.90 30.15 29.74 28.37 27.92 

3.6 42.47 42.28 38.83 38.56 35.89 35.55 

3.8 61.06 61.21 53.73 53.72 48.20 48.05 

 

Table 3: Effects of p and  on qL  

 

 

p  

3  2.3  4.3  

qL  qW  qL  qW  qL  qW  

0.1 11.28 10.74 12.74 12.20 14.51 14.00 

0.3 14.55 13.99 16.73 16.19 19.52 19.02 

0.5 19.63 19.08 23.29 22.78 28.37 27.92 

0.7 28.68 28.16 36.14 35.71 48.27 47.99 

0.9 49.36 48.96 72.85 72.71 135.10 135.67 
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Table 4: Effects of  and v on 
qL  

 

  

4  5.4  5  

qL  
qW  

qL  
qW  

qL  
qW  

3.0 19.63 19.08 17.94 17.39 16.75 16.20 

3.2 23.29 22.78 21.06 20.54 19.52 19.00 

3.4 28.37 27.92 25.27 24.80 23.20 22.72 

3.6 35.89 35.55 31.29 30.91 28.32 27.91 

3.8 48.20 48.05 40.58 40.35 35.93 35.65 

4.0 71.97 72.23 56.81 56.86 48.47 48.40 

 

Table 1 presents a detailed analysis of the impact of arrival and service rates on the 

average queue length and waiting time. The results indicate that an increase in the arrival 

rate leads to a corresponding rise in both metrics, reflecting increased system workload 

and congestion. In contrast, a higher service rate results in a reduction in average queue 

length and waiting time, highlighting the role of enhanced service capacity in alleviating 

congestion and improving overall system performance. Table 2 examines the influence of 

failure and repair rates on these performance indicators. It is observed that higher failure 

rates lead to increases in both average queue length and waiting time, due to more 

frequent service interruptions. Conversely, improvements in the repair rate lead to a 

consistent decline in both metrics, emphasizing the importance of efficient maintenance 

in enhancing system reliability and throughput. Table 3 explores the combined effects of 

the probability parameter p and the failure rate on system performance. The findings 

reveal that both average queue length and waiting time increase with a rise in the failure 

rate, while higher values of p further exacerbate this trend, indicating that both factors 

jointly contribute to system congestion and reduced efficiency. Finally, Table 4 

investigates the interplay between the failure rate (δ) and the vacation rate (v) in 

determining queueing performance. As the vacation rate increases, both average queue 

length and waiting time exhibit a declining trend, suggesting improved server availability 

and efficiency. However, an increase in the failure rate causes a sharp escalation in both 

metrics, highlighting the significant adverse impact of frequent failures on overall system 

behavior. 
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Fig. 1: qL vs.  for different balking rates   Fig. 2: qL vs. p  for different values of v       

                                                                                                                                         

 

 
 
Fig. 3: qL  vs.   for different values of    Fig. 4: qL  vs.   for different values of  

 

Figure 1 illustrates the variation in average queue length with respect to changes in the 

failure rate (δ) across different balking rates. As the joining rate decreases—

corresponding to an increase in the balking rate—the average queue length declines, 

primarily because more units leave the system without receiving service. Furthermore, an 
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increase in the failure rate leads to a longer queue, with this effect being more 

pronounced under higher joining rates. Figure 2 demonstrates the effect of the parameter 

p on the average queue length under varying vacation rates. As the vacation rate 

increases, the average queue length tends to decrease, as the server becomes available 

more frequently. In contrast, an increase in p results in a longer queue since the server 

takes vacations more often, thereby reducing service availability. Figure 3 highlights the 

impact of changes in the arrival rate on average queue length under different failure rates. 

A clear upward trend is observed in queue length with increasing arrival and failure rates, 

indicating heightened system congestion. Finally, Figure 4 presents the variation in 

average queue length with respect to changes in the repair rate under various failure rates. 

As the repair rate increases, the average queue length decreases due to improved recovery 

of failed components, whereas higher failure rates lead to longer queues as a result of 

more frequent interruptions in service. 

8. Conclusion 

In this paper, we have examined a stochastic queueing model featuring two stages of 

heterogeneous service, each with arbitrarily distributed service times. The model 

incorporates an unreliable server that may optionally take a vacation upon completing 

both service stages for a unit. This framework offers greater flexibility and is particularly 

relevant for manufacturing and production environments where machines require 

scheduled downtime or maintenance breaks of fixed duration. The analytical findings 

provide key performance metrics, which can be utilized in cost-based optimization to 

enhance system efficiency. By accounting for service interruptions, the model effectively 

captures the dynamics of various industrial and real-world scenarios. It serves as a 

valuable tool for system designers and queueing theorists to assess and manage delays 

and blocking issues in practical applications. 
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Appendix-A 

 

Proof of Theorem 1: 

By multiplying equations (18) and (19) with appropriate powers of zzz and summing 

over all possible values of the n, we obtain 
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Also from equations (20)-(25), we have  
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Applying the same treatment for boundary condition (27), we get 
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On same treatment, the equations (28) and (29) give 
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On Solving the equation (A.1) gives 
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Integrate the  equation (A.8) with respect to v  with limit 0  to  , we have  
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Multiplying equation (A.8) by )(
1

v  and integrating over v  with limit 0  to  , we have  
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On solving the equations (A.2)-(A.3), we get 
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Integrating the equations (A.11) and (A.12) with limit 0  to   gives. 
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Multiplying the equation (A.11) by )(
2

v and integrating with limit 0 to ∞, we get 
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Multiplying both sides of the equation   (A.12) by )(v  and integrating with limits 0 to ∞, 

we get 
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Using equations (A.6), (A.10) and (A.15), we can write equation (A.7) as  
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Using equation (A.17) in equation (A.14), we have 
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By using equation (A.17), equation (A.16) becomes  
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Now using (A.10), equation (A.6) reduces to  
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Using equations (A.13), (A.15) and (A.20), equation (A.4) becomes  
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By equations (A.5) and (A.21), we get                                                
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                                                       (A.22)                                                             

Now substituting the value of 2,1for),,0(
)(

iszL
i

from equations (A.20) and (A.22) into 

equations (A.9), (A.13), (A.18), and (A.21), we get the required result. 

 

Appendix-B 

 

Proof of Theorem 2: 

Multiply equations (34)-(37) by s , taking the limit as 0s  and using Tauberian 

property, )(lim)(lim
0

tfsfs
ts 

 we obtain equations  
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                                                 (B.2)                             
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Taking limit 1z   in equations (B.1)-(B.4) and using the normalizing condition as 

.1)1()1()1()1( )2()1(  IQMLL                                                                            (B.5) 

We get the required value of I  as 

1I                                                                                                                         (B.6)                                                                                                                                  

where 
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                                     (B.7) 

Using the equation (B.6) in equations (B.1)-(B.4) we get the required result.  
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