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Abstract: Precise classification of brain tumors using MRI scans is crucial for early 

diagnosis and informed treatment planning. However, the complexity of tumor shapes, 

sizes, and locations makes it challenging for traditional methods to achieve high 

accuracy. Deep learning-based models offer promising solutions by learning 

discriminative features directly from the image data. This study aims to evaluate and 

compare the performance of four deep learning models as BrainNet, MobileNetV3 Large, 

a Fusion Model, and a Custom CNN on brain tumor classification tasks involving MRI 

images, with a strong focus on achieving high accuracy, efficient processing, and 

enhanced interpretability. The research involves a comprehensive preprocessing pipeline 

including grayscale conversion, ROI extraction using Otsu’s thresholding, contrast 

enhancement via CLAHE, data augmentation, and resizing. Feature extraction is 

performed through fine-tuning across all four models. The extracted features are 

classified using the XGBoost algorithm. Grad-CAM is applied for visual interpretability, 

and TensorFlow Lite quantization is used to compress the Fusion Model for resource-

constrained deployment. Among the models evaluated, MobileNetV3 Large demonstrated 

the highest classification accuracy. The Fusion Model demonstrated strong performance 

enhanced by attention modules and was effectively compressed through quantization. 

BrainNet and the Custom CNN also provided reliable results, validating their 

effectiveness in medical imaging tasks. The study concludes that MobileNetV3 Large is 

best suited for accurate and efficient brain tumor classification. The integration of fine-

tuning, XGBoost classification, Grad-CAM interpretability, and model quantization 

ensures that the proposed models are not only accurate but also resource-efficient and 

clinically interpretable. 

Keywords: MobileNetV3 Large, BrainNet, XGBoost, Grad-CAM, Fine-Tuning. 

 

1. INTRODUCTION 

Brain tumors are among the most critical and life-threatening neurological disorders, 

arising from abnormal and uncontrolled cell proliferation within brain tissues. These 

tumors can disrupt essential brain functions such as cognition, vision, hormonal 

regulation, and motor coordination, depending on their type, size, and anatomical location 

[1], [2]. Early and accurate detection of brain tumors is essential, as it significantly 

influences treatment planning, prognosis, and survival rates [3]. Among the various 

imaging modalities, Magnetic Resonance Imaging (MRI) remains the most reliable tool 

for brain tumor diagnosis due to its superior soft tissue contrast, non-invasive nature, and 

ability to capture high-resolution anatomical details [4].  
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Brain tumors are typically categorized into three main types: gliomas, meningiomas, 

and pituitary adenomas. Gliomas are generally malignant and infiltrative, making them 

more challenging to treat, whereas meningiomas are typically benign but can exert 

pressure on adjacent brain structures. Pituitary tumors often disrupt hormonal balance and 

can lead to endocrine or visual dysfunctions [5], [6]. Manual interpretation of MRI scans 

by radiologists, while clinically standard, is often time-consuming, subject to human 

error, and limited by inter-observer variability, especially in complex or subtle cases [7], 

[8]. 

To address these limitations, the integration of artificial intelligence (AI) and deep 

learning techniques has revolutionized the field of medical image analysis. In particular, 

Convolutional Neural Networks (CNNs) have demonstrated remarkable performance in 

automated feature extraction and classification of brain tumors from MRI scans [9], [10]. 

Furthermore, transfer learning techniques, which leverage the knowledge from large-scale 

pre-trained models such as EfficientNet, ResNet, and VGG, have enhanced performance 

in medical imaging tasks, enabling faster convergence and improved generalization even 

on relatively small datasets [11], [12], [13]. 

In addition to conventional CNNs, recent advancements in lightweight and 

interpretable models have made real-time clinical deployment feasible. For example, 

MobileNetV3 is a compact architecture designed for edge devices, offering an excellent 

trade-off between accuracy and computational efficiency [22]. Furthermore, attention 

mechanisms, non-local blocks, and depthwise separable convolutions have been 

introduced in hybrid architectures to improve both the focus on tumor-relevant regions 

and the model’s efficiency [14], [15]. These innovations contribute not only to 

performance gains but also to the interpretability and trustworthiness of AI systems in 

clinical environments. 

In this study, we propose a comparative analysis of four deep learning models designed 

for brain tumor classification using only the Figshare MRI dataset, which includes 

annotated MRI images of glioma, meningioma, and pituitary tumors. 

 This research involves the evaluation of the following models: 

 A custom CNN architecture built from scratch using 3×3 and 7×7 convolutional 

kernels [1], 

 BrainNet, a deeper CNN featuring batch normalization and LeakyReLU activations 

[1], 

 MobileNetV3 Large, a lightweight and efficient model suited for deployment on 

mobile health platforms [22], and 

 A Fusion Model integrating ResNet152V2 and a modified VGG16, further 

enhanced with Non-Local Blocks, Dual Attention, and Depthwise Separable 

Convolutions to extract both local and global features [2], [14], [15]. 

Each model is trained and evaluated using standard performance metrics, including 

accuracy, precision, recall, F1-score, and confusion matrix, along with Grad-CAM 

visualizations to provide insight into model interpretability [16], [17], [18]. This 

comparative analysis aims to identify the most accurate and computationally efficient 

architecture suitable for real-world clinical applications in brain tumor classification.  

 

2. LITERATURE REVIEW 

Recent advances in deep learning have significantly impacted brain tumor 

classification, enabling automated and accurate diagnosis from MRI images. 

Convolutional Neural Networks (CNNs) have shown strong potential in learning 

discriminative tumor features without manual feature engineering. Hossain, Alam, and 

Ahmed proposed a CNN-based classifier achieving high accuracy using grayscale MRI 

slices [1], while Amin, Al-Antari, and Hoque developed a fine-tuned CNN architecture to 

classify glioma, meningioma, and pituitary tumors with reduced computational cost [2]. 

Patil, Agarwal, and Kotecha implemented convolutional neural networks combined with 

support vector machines to achieve robust brain tumor detection [3]. 
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Transfer learning has proven especially effective in medical imaging due to limited 

dataset sizes. For instance, Sajjad, Khan, and Muhammad employed transfer learning 

using pre-trained models such as VGG19 and ResNet50, demonstrating notable 

improvements in classification performance [4]. Similarly, Deepak and Ameer employed 

transfer learning with MobileNet to develop a lightweight yet efficient model [5]. Afshar 

et al. introduced Capsule Networks that outperform traditional CNNs on small datasets, 

enhancing spatial relationship modeling [6]. 

In segmentation-guided classification, Pereira, Pinto, and Alves designed a deep CNN 

with 3D patches for glioma detection using the BRATS dataset [7], and Dong, Zhou, and 

Wang proposed a hybrid approach combining U-Net with ResNet to simultaneously 

segment and classify brain tumors [8]. In another study, Swati, Zhao, and Wang fine-

tuned DenseNet for tumor classification, achieving remarkable results on the Figshare 

dataset [9]. 

Hybrid and ensemble architectures further strengthen classification accuracy. Amin et 

al. introduced an ensemble of fine-tuned CNNs using majority voting to enhance 

robustness [10]. Mehta and Sheth combined ResNet and VGG to capture multiscale 

features, improving tumor type prediction [11]. Similarly, Gupta, Yadav, and Tripathi 

designed an ensemble framework integrating CNN with gradient boosting classifiers for 

improved generalization [12]. 

Lightweight architectures are essential for edge deployment. MobileNetV2 and 

MobileNetV3 have been widely adopted in this context. For example, Sultana and Islam 

applied MobileNetV2 for real-time brain tumor detection, reporting competitive accuracy 

with minimal resource usage [13]. Shankar and Perumal built a quantized MobileNetV3 

model for edge inference, supporting fast and low-power classification on embedded 

devices [14]. 

Attention-based mechanisms and fusion techniques have further pushed the boundaries 

of performance. Liu, Zhang, and Zhang proposed dual-attention networks for tumor 

localization and classification [15], while Wang et al. combined channel and spatial 

attention with depthwise separable convolutions to reduce complexity [16]. Selvaraj and 

Rajagopal developed a Non-Local attention-based hybrid model fusing features from 

ResNet and modified VGG, achieving excellent performance on multiple datasets [17]. 

Interpretability tools such as Grad-CAM and LIME are increasingly integrated to 

visualize decision-making regions. Baheti et al. and Raza et al. emphasized the 

importance of explainable AI in medical diagnostics, aiding clinicians in understanding 

and trusting AI decisions [18], [19]. Furthermore, classification with post-hoc heatmaps 

like Grad-CAM has enabled better clinical validation [20]. 

Traditional preprocessing techniques still play a vital role. Otsu’s thresholding, 

CLAHE, and morphological operations have been effectively used to enhance image 

quality and tumor region clarity before classification [21], [22]. Data augmentation 

remains essential to prevent overfitting, with strategies like rotation, flipping, zooming, 

and contrast adjustments employed across studies [23], [24]. 

Datasets like Figshare, SARTAJ, and BR35H have been widely used in brain tumor 

research. While some studies utilize combinations of these datasets [25], [26], others, 

including our current work, focus exclusively on the Figshare dataset due to its clean 

labelling and class balance [27]. 

Recent works also emphasize cross-evaluation with metrics like precision, recall, and 

F1-score. For instance, Wang et al. evaluated classification accuracy alongside Grad-

CAM heatmap to ensure both performance and interpretability [28]. In terms of 

optimization, Adam and SGD optimizers have been used with categorical cross-entropy 

loss functions to train multi-class classifiers effectively [29], [30]. 

Thus, the literature highlights that a combination of robust preprocessing, carefully 

designed CNN or hybrid architectures, transfer learning, lightweight modelling, and 

interpretability tools can produce state-of-the-art performance in brain tumor 

classification — forming the foundation for the four-model comparative study presented 

in this paper. 
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3. PROPOSED SYSTEM  

This research undertakes an in-depth comparative analysis of four advanced deep 

learning models for classifying brain tumors from MRI scans. Emphasis is placed on 

rigorous preprocessing, model optimization, and interpretability through visualization 

techniques to enhance diagnostic accuracy on the Figshare dataset. 
 

3.1 Dataset Description 

The Figshare Brain Tumor MRI dataset contains 3,064 T1-weighted contrast-enhanced 

MRI images classified into three tumor types: glioma, meningioma, and pituitary. The 

dataset [31] includes images from multiple anatomical views and is divided into training 

(2,451 images) and testing (613 images) sets with balanced class distribution. 
 

       

(a)                                          (b)               (c) 

Figure 1. Representative MRI Images from the Figshare Dataset: (a) Glioma, (b) Pituitary, and 
(c) Meningioma Tumor 

 

3.2 Preprocessing Steps 

 

Preprocessing plays a vital role in preparing MRI data to optimize the performance and 

reliability of brain tumor classification models. Various techniques were applied to focus 

the model on relevant tumor regions and enhance performance. 

 Region of Interest (ROI) Selection: To eliminate irrelevant background areas, 

Otsu’s thresholding was used to segment grayscale MRI images by calculating an 

optimal threshold that minimizes intra-class variance. This generates a binary mask 

highlighting tumor regions, from which a bounding box is cropped to isolate the ROI, 

ensuring the model concentrates on critical areas. 

 Contrast Limited Adaptive Histogram Equalization (CLAHE): CLAHE was 

applied to enhance image contrast and improve tumor visibility by dividing images 

into small tiles and equalizing each locally. This method avoids noise amplification 

common in global histogram equalization and preserves important details, with an 

8×8 tile size and a clip limit of 2.0 balancing contrast and noise suppression. 

 Data Augmentation: To increase dataset diversity and reduce overfitting, real-time 

augmentation techniques such as random rotations (±40°), height and width shifts (up 

to 20%), shear transformations, zooming (up to 20%), and random flips were 

employed. 

 Image Resizing: For compatibility with pretrained CNN models, all images were 

resized to 224×244 pixels using nearest neighbour interpolation, which maintains 

image sharpness without smoothing artifacts. 

 

3.3 Classification Models 

This section presents the four deep learning models used for brain tumor classification: 

a Custom CNN, BrainNet, MobileNetV3 Large, and a Fusion Model combining 

ResNet152V2 and modified VGG16. Each model is designed or selected based on its 

balance of accuracy, efficiency, and suitability for medical image classification tasks. 
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3.3.1 Custom CNN Model 

The Convolutional Neural Network (CNN) architecture in this study is designed for 

effective classification of brain tumors from MRI images. CNNs are chosen for their 

ability to automatically learn spatial features, making them well-suited for capturing 

complex tumor patterns with efficiency. The network begins with two convolutional 

layers: the first uses 64 filters (3×3) and the second 128 filters (3×3), extracting low- and 

mid-level features such as edges and textures. Each convolutional layer is followed by 

2×2 max pooling to reduce dimensions and improve robustness to transformations. 

Dropout layers (0.25–0.3) are included to prevent overfitting by deactivating random 

neurons during training. After feature extraction, a dense layer with 512 neurons 

processes high-level features, followed by a final dense layer with 4 neurons for 

classifying glioma, meningioma, pituitary tumor, and no tumor. ReLU activation is 

applied in convolutional and dense layers, while softmax is used for output. This 

architecture integrates convolution, pooling, dropout, and dense layers to enhance feature 

learning, reduce overfitting, and achieve reliable tumor classification while balancing 

complexity and efficiency. 

 
3.3.2 BrainNet Architecture 

The BrainNet architecture is a custom-designed Convolutional Neural Network (CNN) 

model developed for effective brain tumor classification. It incorporates a deep structure 

consisting of seven convolutional layers, each followed by a Batch Normalization layer 

and a Max Pooling layer. The convolutional layers use filters to extract unique features 

from the input brain MRI images. The initial convolutional layer employs 32 filters of 

size 3×3, followed by the second and third layers, which each use 64 filters of size 7×7. 

The fourth and fifth convolutional layers each utilize 128 filters of size 7×7, followed by 

the sixth layer with 256 filters, and the final seventh layer employing 512 filters—all with 

a kernel size of 7×7. This hierarchical progression enables the extraction of increasingly 

abstract and meaningful features at deeper network layers. To address training challenges 

such as vanishing gradients and dying neurons, LeakyReLU is used as the activation 

function in each convolutional layer.  

 

 
 

Figure 2. Brainnet Architecture 
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LeakyReLU maintains neuron activity during training by allowing a small, non-zero 

gradient for negative input values, preventing the neurons from becoming inactive. The 

Batch Normalization layers help stabilize training by reducing internal covariate shift, 

thereby accelerating convergence and improving overall model stability. Max pooling 

with a 2×2 kernel is applied to downsample the feature maps, emphasizing the most 

significant features while reducing dimensionality and mitigating the risk of overfitting. 

Following the convolutional layers, a flattening layer converts the multidimensional 

feature maps into a one-dimensional vector, making them suitable for processing by the 

subsequent fully connected classification layers. This is followed by two fully connected 

(dense) layers, each accompanied by dropout layers to prevent overfitting by randomly 

deactivating a fraction of neurons during training. At the final stage of the architecture, a 

softmax output layer is employed to enable multi-class classification of brain tumor types.  

Overall, BrainNet effectively captures both fine and coarse tumor features while 

ensuring training stability and generalization across varied MRI images. 

 

3.3.3 MobileNetV3 Large Model 

MobileNetV3 is a cutting-edge convolutional neural network architecture designed for 

efficient deployment on mobile and edge devices with limited computational resources. 

As the third generation in the MobileNet series, it emphasizes a balance between 

efficiency, speed, and accuracy. This architecture introduces several innovations, such as 

lightweight inverted residual blocks, non-linear activation functions (like Swish and Hard-

Swish), and Squeeze-and-Excitation (SE) modules for enhanced feature recalibration. 

These components collectively allow MobileNetV3 to maintain strong performance while 

operating within tight hardware constraints. The architecture comes in two versions: 

MobileNetV3-Large, intended for devices with moderate processing power, and  
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MobileNetV3-Small, optimized for highly constrained environments. One of the central 

innovations is the inverted residual structure, which reduces computational overhead 

without sacrificing the model’s ability to capture complex and meaningful patterns in 

input data. Squeeze-and-Excitation (SE) blocks enhance model performance by adaptively 

recalibrating channel-wise feature responses, thereby improving the network’s 

representational capacity. MobileNetV3 is suitable for a range of computer vision tasks, 

including image classification, object detection, and semantic segmentation. Its 

architecture also benefits from Neural Architecture Search (NAS) and network pruning, 

both of which contribute to refining the model for optimal operation on real-time, low-

power platforms. The bottleneck block structure is a core design feature that dynamically 

modulates channel importance, enabling efficient computation with competitive accuracy. 

Overall, MobileNetV3 stands out as a practical and powerful model for mobile AI 

applications. 
 

3.3.4 Fusion Model Based on ResNet152V2 and Modified VGG16 

The fusion model designed for brain tumor classification combines the strengths of two 

powerful convolutional neural networks: ResNet152V2 and a modified VGG16. 

ResNet152V2, a very deep residual network, is known for its ability to extract rich 

hierarchical features through the use of residual (skip) connections, which help in 

mitigating the vanishing gradient problem during training. It produces a high-dimensional 

2048-feature representation. On the other hand, the VGG16 model is modified to better 

preserve fine-grained tumor details, which are crucial in medical imaging. This modified 

VGG16 extracts intermediate features from its 3
rd

, 4
th
, and 5

th
 convolutional blocks and 

enhances them using non-local blocks to capture long-range dependencies. Additionally, 

Depthwise Separable Convolutions (DWSC) are applied to improve efficiency without 

compromising feature quality. The outputs from ResNet152V2 and the modified VGG16, 

resulting in 2048 and 896 features respectively, are concatenated to form a 2944-

dimensional feature vector. A dual attention mechanism is employed to enhance the 

quality of extracted features by focusing on both spatial and channel-wise information. 

The channel attention module focuses on the most informative feature channels using 

global average pooling and dense layers, while the spatial attention module identifies 

significant spatial regions using a 1×1 convolution followed by a sigmoid activation. The 

combined attention output helps emphasize the most relevant tumor characteristics. To 

reduce the feature dimension and computational burden, a 1×1 pointwise convolution is 

applied, compressing the 2944-dimensional Feature map to 128 features.  This fusion 

model, by integrating advanced feature extraction, attention-based refinement, and a 

gradient boosting classifier, achieves accurate and efficient brain tumor classification 

suitable even for deployment in resource-constrained environments. 

 

3.4 Fine tuning 

Fine-tuning is an essential deep learning technique that adapts pre-trained models to 

specific tasks by retraining select layers or the entire network on a new dataset. It 

leverages the general features learned from large datasets like ImageNet and adjusts them 

for task-specific patterns. In this project, fine-tuning is applied to enhance brain tumor 

classification from MRI images. In the Fusion Model, both ResNet152V2 and a modified 

VGG16 are fine-tuned after adding Non-Local attention blocks, Dual Attention 

mechanisms, and Depthwise Separable Convolutions. Selected deeper layers are unfrozen 

and retrained using the brain tumor dataset. MobileNetV3 Large is fine-tuned by 

modifying its top and core layers for better domain learning. Even BrainNet and the 

custom CNN, though built from scratch, undergo internal fine-tuning through iterative 

optimization and selective re-training. This process enables all models to learn more 

relevant features from pre-processed MRI scans, improving classification performance 

across the tumor classes: Glioma, Meningioma, and Pituitary. 
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3.5 XGBoost 

 

XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm 

based on the gradient boosting framework, known for its speed, scalability, and high 

predictive accuracy. It constructs decision trees one after another, where each new tree 

focuses on correcting the mistakes made by the previous ones. XGBoost incorporates L1 

and L2 regularization to prevent overfitting, supports parallel computation, handles 

missing values automatically, and optimizes tree construction through pruning. In this 

project, XGBoost is used as the final classifier in multiple deep learning pipelines, 

including BrainNet, MobileNetV3, and a fusion model combining ResNet152V2 and 

modified VGG16. These models first extract deep features from pre-processed MRI brain 

images, which undergo grayscale conversion, ROI extraction using Otsu’s thresholding, 

contrast enhancement via CLAHE, augmentation, and resizing. BrainNet and 

MobileNetV3 generate rich feature representations, while the fusion model enhances them 

further with Non-Local blocks, Dual Attention, and Depthwise Separable Convolutions. 

Rather than using softmax layers, these features are fed into XGBoost for final 

classification. This hybrid approach combines deep learning's feature extraction 

capabilities with XGBoost's effective classification, improving accuracy in identifying 

brain tumors such as Glioma, Meningioma, and Pituitary. 

 

3.6 Optimizer & Loss Function 

 

In this project, the Adam optimizer is used to train all deep learning models. Adam 

(Adaptive Moment Estimation) combines the benefits of AdaGrad and RMSProp by 

computing adaptive learning rates using running averages of both gradients and their 

squared values. It is efficient, converges quickly, and handles sparse gradients well—ideal 

for complex models and large datasets. The models are trained using categorical cross-

entropy loss, a standard loss function for multi-class classification. It quantifies the 

discrepancy between predicted and true probability distributions, aiming to improve both 

the accuracy and confidence of the model’s predictions. Together, Adam and cross-

entropy provide an effective training framework for accurately classifying brain tumor 

types: Glioma, Meningioma, and Pituitary. 

 

3.7 Grad – Cam Integration 

To enhance interpretability and ensure transparency, Grad-CAM (Gradient-weighted 

Class Activation Mapping) is applied to all models in this study, including BrainNet, 

MobileNetV3, the fusion model (ResNet152V2 + modified VGG16), and the custom 

CNN. Grad-CAM generates class-specific heatmaps by computing gradients of the target 

class score with respect to the final convolutional layer’s feature maps. These heatmaps 

highlight tumor-affected regions in MRI scans, confirming whether predictions are based 

on clinically relevant features. In this project, Grad-CAM not only aids interpretability but 

also enables performance comparison by showing how each model interprets tumor 

patterns, reinforcing reliability and clinical applicability. 

The Grad-CAM process involves: 

• Forward Pass: Input MRI (150×150) is passed through the model to obtain predictions 

and final-layer activations. 

• Gradient Calculation: Gradients of the target class score are computed with respect to 

activation maps. 

• Weighted Activation Map: Feature maps are weighted by gradients and summed into a 

class-discriminative map. 

• Heatmap Generation: The map is normalized and overlaid on the MRI to visualize 

critical regions.  

This process improves transparency and supports the use of deep learning models in 

clinical decision-making. 
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Figure 4. Proposed System Architecture 

 

4. RESULTS ANALYSIS 

The performance of the proposed brain tumor classification models was evaluated 

using various quantitative metrics such as accuracy, precision, recall, F1-score, and 

confusion matrix. All experiments were conducted on Google Colab, which provides a 

GPU-enabled environment suitable for training deep learning models efficiently. The 

evaluation helps to assess the effectiveness of each model in classifying MRI images into 

glioma, meningioma, and pituitary tumor categories. 

 

4.1 Evaluation Metrics 

The comparative evaluation of four deep learning models—BrainNet, MobileNetV3, 

Custom CNN, and the Fusion Model—demonstrates varying levels of effectiveness in 

brain tumor classification. The Custom CNN model delivers strong precision, especially 

for glioma (0.99), though its recall for glioma (0.91) slightly lowers the F1-score to 0.95. 

It performs well for meningioma and pituitary with F1-scores above 0.93. 
 

  
Figure 5. Evaluation metrics of CNN 

  BrainNet also achieves excellent results, particularly for the pituitary class with a perfect 

recall of 1.00 and F1-scores near 0.99 overall, indicating high sensitivity and accuracy. 
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Figure 6. Evaluation metrics of Brainnet 

In contrast, MobileNetV3, while efficient and lightweight, shows comparatively lower 

performance, especially for the meningioma class with an F1-score of 0.95 and recall of 

0.94, although it performs well, it attained F1-scores of 0.99 for glioma and 0.98 for 

pituitary, demonstrating high classification performance.  

 

Figure 7. Evaluation metrics of Mobilenetv3  

The Fusion Model consistently outperforms others with precision, recall, and F1-scores 

all above 0.978, showing balanced and robust performance across all tumor types.  

 

 

Figure 8. Evaluation metrics of Fusion model 

Overall, the Fusion Model offers the most balanced classification, followed closely by 

BrainNet and CNN, with MobileNetV3 being more suitable for environments prioritizing 

model efficiency over peak accuracy. 

 

4.2 Training Accuracy & Test Accuracy            

Above Table shows the performance of various deep learning models used for brain 

tumor classification is summarized based on their training and testing accuracies.  

Table 1. Comparisons For Model Performance 

 

FRAMEWORK TRAINING 

ACCURACY 

TESTING 

ACCURACY 

CUSTOM CNN 
96.07  93.25 

BRAINNET 
98.03 94.34 

MOBILENETV3 
99.92 98.12 

FUSIONMODEL  
99.72 96.09 
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The Fusion model achieved a high training accuracy of 99.72% and a testing accuracy of 

96.09%, demonstrating strong generalization capabilities due to the integration of 

ResNet152V2 and a modified VGG16 with attention mechanisms. The BrainNet model, a 

custom CNN architecture with layered convolutional blocks, attained a training accuracy 

of 98.03% and a testing accuracy of 94.34%, indicating effective learning with slightly 

lower generalization compared to the fusion approach. The MobileNetV3 model, known 

for its lightweight structure and efficiency, outperformed the others with a training 

accuracy of 99.92% and a testing accuracy of 98.12%, making it highly suitable for 

practical deployment. Finally, the custom CNN model achieved a training accuracy of 

96.07% and a testing accuracy of 93.25%, showing decent performance but relatively 

lower accuracy compared to the other models in the study. 

 

4.3 Confusion Matrix 

 

    The confusion matrix highlights each model’s classification performance across 

glioma, meningioma, and pituitary tumors. All models show strong results, particularly in 

accurately identifying glioma and pituitary cases, with few or no false positives. Most 

misclassifications occur in the meningioma class, indicating potential benefits from finer 

feature extraction or enhanced data augmentation.  

                                                                            

                             

 
Figure 9. Confusion Matrices of Custom CNN ,Brainnet ,Mobilenetv3 ,Fusion Model 

Respectively 
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4.4 Grad Cam Visualization 

To improve model interpretability, Grad-CAM (Gradient-weighted Class Activation 

Mapping) was employed to visualize the region’s most influential in the model’s 

predictions. The visualization confirms that the model accurately attends to the tumor- 

affected area, enhancing trust in its diagnostic decisions. 

                         

            

 

 
Figure 10. Grad-CAM visualization showing focused activation regions using MobileNetV3 

The Grad-CAM heatmap of a correctly classified tumor image highlights: 

 Red areas: High activation, indicating focus on the tumor region. 

 Blue areas: Low relevance, representing non-tumorous regions. 

 

4.5 Training and Validation Accuracy & Loss Graphs 

The graphs below depict the training and validation accuracy and loss across epochs for 

each model—Custom CNN, BrainNet, MobileNetV3 Large, and the Fusion Model. These 

visualizations are essential to evaluate learning behaviour, detect overfitting or 

underfitting, and compare the generalization ability of the models. A close alignment 

between training and validation curves indicates stable and robust learning performance. 

BrainNet, a custom CNN with seven convolutional layers, also performs well with 

training accuracy nearing 100% and validation accuracy around 98%, showing minimal 

overfitting. MobileNetV3 demonstrates efficient learning with fast convergence and 

validation accuracy of approximately 97%, making it suitable for lightweight deployment. 

The simple CNN shows steady improvement but with a noticeable gap between training 

and validation accuracy, suggesting mild overfitting and potential for further tuning. 
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Figure 11. Accuracy and Loss values of CNN 
 

 
 

 Figure 12. Accuracy and Loss values of BrainNet  
 

 
 

Figure 13. Accuracy and Loss values of MobileNetV3 

 

 
 
 

Figure 14. Accuracy and Loss values of Fusion Model Combining Resnet152v2 and Modified 
VGG16 
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5. CONCLUSION 
 
This study evaluated four deep learning models—Fusion Model, BrainNet, 

MobileNetV3, and a Custom CNN—for brain tumor classification using MRI images. 

Among them, MobileNetV3 achieved the highest accuracy (98.12% test accuracy) while 

maintaining a lightweight architecture, making it ideal for real-time and mobile health 

applications. The Fusion Model demonstrated strong generalization (96.09% test 

accuracy) by integrating powerful backbones (ResNet152V2 and modified VGG16) with 

attention mechanisms and depthwise separable convolutions, offering a solid balance 

between complexity and performance. 

The BrainNet model also showed reliable performance (94.34% test accuracy), 

benefiting from its deeper custom architecture with 3×3 and 7×7 kernels. The Custom 

CNN, though simpler, performed competitively (93.25% test accuracy), proving the 

effectiveness of the designed preprocessing and training strategies. 

Confusion matrix analysis confirmed high sensitivity and specificity for MobileNetV3 

and Fusion models, especially in identifying glioma, meningioma, and pituitary tumors. 

The results were supported by a rigorous preprocessing pipeline—including grayscale 

conversion, Otsu’s thresholding, CLAHE, and real-time augmentation—that enhanced 

model learning. Despite the absence of a separate validation set, consistent generalization 

gaps indicate limited overfitting. 

Overall, this work demonstrates that high classification accuracy in brain tumor 

detection is achievable through well-structured architectures and preprocessing. Future 

work will explore k-fold cross-validation, external dataset evaluation, and model 

deployment on edge devices using quantization for clinical applications. 
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