Design of Steel Connections as per IS 800:2007 and **Comparison with other Codal Provisions**

Dr. Ghanshyam M. Savaliya

Assistant Professor, Government Engineering College Palanpur, Palanpur, Banaskantha, Gujarat, INDIA. 385001

Abstract-- Advancement in design, fabrication and erection of steel structures has taken place with edification of technology and globalization. Limit state design method (LSM) philosophy for steel structures represents advantages in terms of more accuracy and economy over traditional design methods. Steel connection parameters such as specifications, assumptions, and design methodology based on provisions of IS 800:2007 have been presented in this paper. Extent of discussion has been particularly focused on important connections like web angle connections.

Design steps for steel connections have been summarized based on codal provisions of different countries. A typical design example of double web angle connections has been computed using corresponding design stipulations of BS5950, AISC-LRFD and IS 800. Analytical calculations of the solved example have been presented and the results are compared using different countries code.

Key Words-- Limit State Design, Steel Connections, IS 800, AISC LRFD, BS5950

I. INTRODUCTION

Steel structures are assemblages of different elements joined together using various types of steel connections. The steel connections are important elements in controlling the behavior of the whole steel structure. The behavior of connections is complex due to the influence of factors like geometric imperfections, lack of fit, residual stress, connection flexibility, geometric complexity, slipping, nonlinear load-deformation characteristics etc. A variety of components such as angle cleats, end plates, stiffeners and bolts are used to transfer disperse loads from one member to other. Uses of bolts for discrete load paths are employed to transfer loads. Understanding of different types of connections is very essential for safe and economical design of the steel structure. It is vital for the connectors to develop full strength or a little higher strength compared to the members being joined for achieving an economical design.

The structural design of steel structure is based on provisions of a standard code. A standard code serves as a reference document consisting of important guidelines related to different philosophies of connection design. Standard codes incorporate comprehensive details for the design of different structural components. These details include, concept of design, design specifications, design methods, safety factors and loading values etc. Here, in this article these details are discussed in brief for different countries codal provision.

II. LITERATURE SURVEY:

Many countries have published their own standards, these codes are a product of constant research, development and past experiences of experts corresponding to respective fields. The philosophy of the limit state method (LSM) was introduced in British Code CP 110(1972) (now BS 8110) and Indian concrete code IS 456:1978. Limit states design was first adopted for steel structures in the Canadian code in 1974, this was followed by the British codes BS 5950 and BS 5400. In USA, the American Institute of Steel in Construction introduced LSM in the form of load-resistant factor design (LRFD) in 1993. N. Subramanian (2008).

IS 800 (2007):

Due to globalization, engineering practice has not remained confined to a particular area therefore practicing engineers before 2007 were facing difficulties with existing code in India. Realizing these difficulties Bureau of Indian Standards, New Delhi with the faculty of Civil Engineering, Indian Institute of Technology, Madras to help and prepare a draft for revision of IS 800 (2007). This work was carried out in a project mode with financial support from the Institute for Steel Development and Growth (INSDAG), Kolkatta.

IS 800(2007) is based on international practice which is an improvement over the previous code IS 800 (1984), with new provisions on partial safety factor-based limit state method of design including design against fatigue, design for fire load, design for durability, design by experimental data etc. It includes parameters like fatigue, ultimate strength, member end connections, restrains and many more having greater influence on the design considerations which makes IS 800 (2007) more complex and time consuming for new users. The philosophy of the limit state design method incorporates a multiple safety factor format that to provides adequate serviceability at service loads, by considering all possible 'limit states'.

Design assumptions and specifications for steel connections have been summarized on the basis of codal provisions used in different countries. The design provisions of connections are compared with different countries codes. Design stipulations towards different types of steel connections pertinent to AISC 'Load and Resistance Factor Design' (LRFD) (2005) and BS 5950 (2000) specifications have been compared with the relevant parameters of IS 800 (LSM)(2007).

III. COMPARISON OF SPECIFICATIONS

Here, general specifications for design of connections are presented here with different countries code. Specifications for connections include spacing, design strength of bolts in shear, bearing and tension force, Bolt Subjected to Combined Shear and Tension stresses are compared as presented in Table 1 and some notations of Table are as follows.

 n_n =number of shear planes with threads intercepting shear plane

 n_s =number of shear planes without threads intercepting shear plane

 A_{sb} =nominal plain shank area of bolt

 β_{lg} =Reduction factor that allows for effect of large grip length

 β_{li} =Reduction factor which allows for overloading of end bolts that occur in long connection

 β_{pkg} =Reduction factor to account for packing plates in excess of 6mm

 A_{nb} =net tensile area at threads, may be taken as area corresponding to root diameter at thread For ISO thread profile, as $A_{nb} = (A/4)(d-0.9382p)^2$

TABLE I

COMPARISON OF GENERAL SPECIFICATIONS

	IS:800 (2007)	BS:5950-I (2000)	AISC LRFD (2005)	
Bolt Holes	d+1mm;d≤14mm	-	-	
(d=bolts dia.)	d+2mm;d>16mm	d+2mm;d≤24mm	d+2mm;d≤24mm;	
	d+3mm;d>24mm	d+3mm;d>24mm	d+3mm;d>24mm	
	d=dia. of bolts	d +6mm; Holding down	d=dia. of rivet/bolts	
		bolts:		
Minimum Spacing	$\geq 2.5 \times d$	$\geq 2.5 \times d$	$2.66 \times d$ in direction of	
	d=dia. of rivet/bolt	d=dia. of rivet/bolt	force	
Maximum Spacing in		In the direction of stress		
Direction of stresses	<32 <i>t</i> or 300 mm,	should not exceed $14 \times t$	12 t < 6 in.	
exposed.	-	Maximum spacing $<16 \times t$	(150 mm)	
Any direction connection	t= thickness of	≤ 200mm	T=thickness of the	
in exposed condition	thinner plate	t=thickness of thinner	connected part	
		plate		
Pitch, in		Vertical = 70mm;		
Tension member,	<16 <i>t</i> or 200 mm,	bolt gauge or cross	Min. of	
Compression member,	<12 <i>t</i> or 200 mm	centres = 90 mm or	12 <i>t</i> or 150 mm	
	t = thickness of	140mm for end plates &	t = thickness of thinner	
Connecting to face of	thinner plate	100mm+ beam web	plate	
Rolled hot sections		thickness		
(RHS)		$\geq 0.3 \times RHS$ face width		
Min. Edge dist.				
Sheared or	$1.7 \times \text{Hole}$	1.40 x Hole Diameter	$1.75 \times \text{Hole Diameter}$	
Hand Flame Cut,	Diameter	1.25 x Hole Diameter	$1.25 \times \text{Hole Diameter}$	
Rolled, Machine Flame	$1.5 \times \text{Hole}$			
Cut	Diameter			

	T	1	1	
Max. Edge distance to	$< 12 \times t\varepsilon$	$11 \times t\mathcal{E}$		
nearest line of fasteners	Yield stress ratio	$\varepsilon = (275/f_y)^{1/2}$	<24 <i>t</i> or 305 mm,	
from an edge of any	$\varepsilon = (250/f_y)^{1/2}$	t is thickness of thinner	t is thickness of thinner	
unstiffened part,	and t is thickness	outer plate	outer plate	
Exposed to corrosive	of thinner outer	_		
influences	plate	< 40 mm + 4t,	<14 <i>t</i> or 180 mm,	
	< 40 mm + 4t,	ŕ	,	
Effective Areas of Bolts	A _n net tensile	A _s , Area at root of	Area at threads, A _{nt}	
	stress area at root	threads	it is a second of the second o	
	of the threads			
Factored shear force (V_{sb})		shear capacity Ps of a bolt	The design tension or shear	
Tuetored shear rorce (Vsb)	V_{ab} =design	should be taken as:	strength, $\Phi \times F_n \times A_b$,	
	strength	$P_s = p_s \times A_s$	Φ = 0.75 (LRFD);	
	=smaller of shear,	$I_s - p_s \sim I_s$	$\Phi = 0.75 \text{ (ERG } D),$	
	V_{dsb} and bearing,			
Chan Canadia of Dale	V _{dpb}	D · · · A	$V = \delta v A \cdot v E$	
Shear Capacity of Bolt	$V_{dsb} \leq V_{nsb} / \gamma_{mb}$	$P_s = p_s \times A_s$	$V_u = \Phi \times A_b \times F_v$	
(V_{dsb})		p_s =Shear strength of bolt,	Φ=resistance factor	
			F _{v=} Nominal strength	
			A _{b=} Nomi. area	
nominal shear capacity of	$V = \frac{f_u}{f_u} (n A + n A)$	$V_{nsb} = p_s \times A_s \times Reduction$ $factors$	$F_v = 0.6 \times nominal$	
a bolt (V_{nsb})	•			
	$oldsymbol{eta}_{ ext{lj}} oldsymbol{eta}_{ ext{lg}} oldsymbol{eta}_{ ext{pkg}}$	p _s =Shear strength of bolt,	=0.65 for A325& A490	
		A_s =Shear area	$A_{nt} = 0.785 \left(d - \frac{0.9743}{r} \right)$	
Net tensile area at thread	$A_{nb} = (A/4) \times (d-$	A _t =tensile area of bolt	(")	
	$0.9382p)^2$	At-tensile area of boil	n=no of threads per inch	
A_{nb}	$A_{nb} = 78-80\%$ of		ii—no of threads per men	
			,	
Dalastian fastan fan	gross area	1 > 500	0 10 000	
Reduction factor for	$\beta_{lj} = 1.075 - l_j /$	$L_j > 500mm$	$\beta_{lj} = 1.2 - 0.002$	
Long Joints (β_{lj}) ;	(200 d)	$(5500-L_j)/5000$	(L/w)≤1.0	
element containing more	but $0.75 \leq \beta_{lj} \leq$	L_j =Length of joints	L=actual length of end	
than two bolts	1.0		loaded weld	
Reduction factorfor	β_{lg} = 8 d /(3	$(8d)/(3d+T_g)$	No. increased by 1% for	
Large Grip Lengths l_g	$d+l_g)$;	T_g =thickness of grip	each 2mm increased in	
> 5× d of bolts	Where l_g < $8\times d$ &		grip	
	$eta_{lg}\!\!<\!\!eta_{lj,}$			
Reduction factor for	$\beta_{pkg} = (1-$	$(9d)/(8d+3*t_{pa})$	[1-0.0154(t-6)];	
Packing Plates(β_{pkg})	$0.0125t_{pkg}$	t _{pa} =thickness of pack	t=total thickness of filler	
9 1 0	where , $t_{pkg} =$		plates≤19mm	
	thickness of		_	
	thicker packing			
	in mm			
	l	L	l	

IV. DOUBLE ANGLE WEB CLEAT CONNECTION

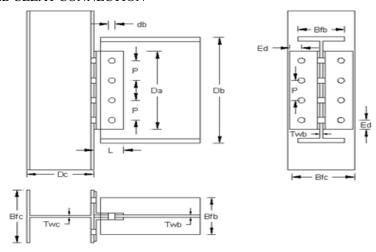


Fig. 1 DETAILS OF DOUBLE WEB ANGLE CONNECTION

Connection consists of a pair of angle cleats that are usually bolted to supported beam web in shop and beam assembly is then bolted to supporting member on site. Double web angle connection as shown in Fig. 1 the step wise procedure and design codal provision using different countries code are presented as shown in Table 2.

TABLE 2 COMPARISON OF DESIGN PROVISIONS FOR WEB ANGLE CONNECTIONS

	IS:800 (2007)	BS:5950-I (2000)	AISC LRFD (2005)	
Design	Limit State design	Limit State	Load and Resistance Factor	
philosophy	Method	design Method	Design	
Steel Grade	Fy 250	S275	$f_y=50$ ksi, $f_u=65$ ksi	
			$f_y=36ksi$, $f_u=58ksi$	
Bolt class	M20 of 8.8 grade	M20 of 8.8	3/4 inch A325-N	
		grade		
	1. Design of com	nection to Beam we	b	
Shear capacity of	$V_{dsb} \leq V_{nsb} / \gamma_{mb}$	The shear	$V_u = \Phi.A_b.F_v$	
bolt connecting	$V_{nsb} = f_u / \sqrt{3} (n_n A_{nb})$	capacity of a	Φ=resistance factor,	
cleats to beam	$+n_sA_{sb})eta_{lj}eta_{lg}eta_{pkg}$	single bolt	F _{v=} Nominal strength,	
web		$P_s = p_s A_s$	A _b =Nominal area at major	
		p _s =Strength of	thread dia	
		bolts		
		A _s =Area of bolts		
Pitch, in		Vertical =		
Tension member,		70mm;	Min. of	
Compression	<16 <i>t</i> or 200 mm,	bolt gauge =	12 <i>t</i> or 150 mm	
member,	<12 <i>t</i> or 200 mm	90mm or	t = thickness of thinner	
	t = thickness of thinner	140mm for end	plate	
	plate	plates &		
		100mm+ beam		
		web thickness		
		$(t_{\mathrm{w}});$		
Horizontal Shear	$H=V_x e_x r_i / \Sigma r_i^2$	$F_{sm}=F_v a/Z_{bg}$		

force due to eccentricity of column face to bolt Vertical Shear force per bolts Resultant due to direct shear and moment e_x =eccentricity of column face to bolt e_x =eccentricity of column e_x =	∂R_n
Vertical Shear $v=V/n$ $F_{sv} = F_v/n$ $F_{sv} = R_u/n$ force per bolts $P_{sv} = R_u/n$	∂R_n
force per bolts n=No of bolts n=No of bolts n=No of bolts Resultant due to direct shear and $R = \sqrt{(H^2 + v^2)}$ $F_s = \frac{From \ table \ [1]}{\sqrt{(F_{sv}^2 + F_{sm}^2)}}$ $f_w = 0$ web thick. of web $G_w = 0$	∂R_n
Resultant due to direct shear and $R = \sqrt{(H^2 + v^2)}$ $F_s = \frac{From \ table \ [1]}{\sqrt{(F_{sv}^2 + F_{sm}^2)}}$ $f_w = \frac{From \ table \ [1]}{\sqrt{(F_{sv}^2 + F_{sm}^2)}}$	∂R_n
direct shear and < Bolt shear strength $\sqrt{(F_{sv}^2 + F_{sm}^2)}$ t _w =web thick. of web Q	∂R_n
	R_n
moment 2 D	
2. Design of Connection to column flange	
Slip resistance per $V_{nsf} = \mu_f \ n_e \ K_h \ 0.8 \ A_{sb}$ $P_{sL} = 1.1 \ K_s \ \mu$ slip resistance, ΦR_n	
bolt $0.70 f_{ub}$ P_0 $Rn = \mu D_u h_{sc} T_b N_s$	
P ₀ =min. shank (a) For standard size hold	es
tension $h_{sc} = 1$	
μ = slip factor	
varies from 0.2	
to 0.5	
Horizontal Shear $H=V_xgr_i/\Sigma r_i^2$ $F_{sm}=F_va/Z_{bg}$	
force due g=eccentricity due to $Z_{bg} = n(n+1)p/6$ -	
toeccentricity guage dis.	
Resultant force on From table	
outermost bolt $R = \sqrt{(H^2 + v^2)}$ $F_s = \sqrt{(F_{sv}^2 + (I)^2)}$	
due to direct shear $ $ < Bolt capacity $ $ F_{sm}^{2} $ $ t_{f} =thickness of flange	of
$ $ and moment $ $ $ < 2 P_s $ beam	
$\Phi R_n > R_u$	
3. Connecting element capacity	
Shear capacity of $V/2 t f_y/(\sqrt{3} \gamma_{m0})$ $P_v = \min(0.6 p_y)$ $\Phi R_n = \Phi [0.6 f_u A_{nv} +$	f_y
the leg of the t =thickness of web angle, A_v , 0.7 p_yK_e A_{gt}	
angle cleat $f_y = 250 \text{N/mm}^2$ $A_{v.net}$ $design strength, \Phi R_n$	
$\gamma_{m0} = 1.25$ $A_v = 0.9 (2e_1 + (n))$ $R_n = 0.60 F_y A_g$	
$(-1) p) t_c$ $\Phi = 1.00$	
$A_{v.net} = A_v - n D_h$	
t _c	
Bearing resistance $V_{sb} \leq V_{npb} / \gamma_{mb}$ $P_{bs} = d t_c p_{bs}$	
on cleat $V_{npb} = 2.5 d t f_u \qquad < 0.5 e t_c p_{bs} \qquad -$	
p_{bs} =460 N/mm ²	
Cleat Bending $M_{req} = V/2 \times g/2$ $M_x = V/2 \times g/2$ $M_x = V/2 \times e_1$	
moment g=guage distance g=guage e ₁ =eccentricity	
distance	
Moment capacity $M_{obt}=1.2 \times f_y \times Z/\gamma_{m0}$ $M_{obt}=1.2 \times p_y \times Z_x$ $M_c=p_y \times Z$	
of cleat $f_y=250 \gamma_{m0}=1$ $p_y=275$ $p_y=36 \text{ ksi}$	
$M_{obt} > M_{req}$ $M_{obt} > M_x$ $M_c > M_x$	

Result Discussion on Design examples

Here, an effort is made to solve the problem using different countries' codal provisions for same geometry and component size of the connection. Double web angle connection is considered with configuration as shown in Fig 1. Capacity in a connection is found out with one vertical line of bolts. Here, in this problem connection configuration are predefined to resist a shear force of 120 kN.

Strengths of following component are checked for the design of double web angle connection.

1. Bolts group in beam web

- 2.Bolts group in column flange
- 3. Angle cleats in shear
- 4. Angle cleats in bending

Detailing of beam column connection configuration is shown in Fig. 1. and size parameters presented in Table 4 for all examples using different codes.

Table 3 DETAILS OF SECTION PROPERTIES AND CONNECTION CONFIGURATION PROVISION

	IS 800 (2007)	BS 5950 (2000)	AISC LRFD (2005)	
Docion philosophy	Limit State design	Limit State design	Load and Resistance	
Design philosophy	Method	Method	Factor Design	
Steel Grade	Ev. 250	2275	$f_y=50$ ksi, $f_u=65$ ksi	
Steel Grade	Fy 250	S275	$f_y=36$ ksi, $f_u=58$ ksi	
Bolt class	M20 8.8	M20 8.8	3/4 inch A325-N	
Beam	ISMB400	UB406 x 140 x 39	W16 x 31	
Depth of D _b	400	406	15.88" (403 mm)	
Width of flange B _{fb}	140	140	5.53" (140 mm)	
Thick. of flange t _{fb}	16	8.6	0.44" (11 mm)	
Thick. of web twb	8.9	6.4	0.28" (7.1 mm)	
Column	ISHB200	UC203 x 203 x 46	W8 x 31	
Depth of D _b	200	203	8" (203 mm)	
Width of flange B _{fc}	200	203	8" (203 mm)	
Thick. of flange t _{fc}	9	11	0.44" (11 mm)	
Thick. of web twc	7.8	7.2	0.28" (7.1 mm)	
Angle section	90 x 90 x 8mm	90 x 90 x 8mm	3½" x 3½" x 0.312"	
Pitch	75	75	3.0" (76.2 mm)	
Edge distance	35	35 1.3" (33.2 m)		

Table 4 COMPARISON OF COMPONENT STRENGTH WITH DIFFERENT CODES

Codal provision	IS 800		BS (2000)	AISC (2005)	
Component Strength	1984 (kN)	2007 (kN)	kN	kN	kips
Bolts group in beam					
web	230	146	177	565	127
Bolts group in column					
flange	290	305	589	687	154.4
Angle cleats in shear	315	545	701	395	88.74
Angle cleats in bending	357	536	700	647	145.4

Summary

The following conclusions are made from the comparative study of connections specification, provisions and analytical work conducted.

- Connection component strength varies with multiple safety factors.
- Design steps for steel connections have been summarized using different countries' codal provisions.
- In the Limit state design method, specifications for connections design are found likely similar in different countries' codal provision.
- Evaluated component strength of connection using different countries' codal provisions are as presented in Table 4.

V. REFERENCES

- [1] AISC-2005 Load and Resistance Factor Design (LRFD) Specification for Structural Steel Buildings, American Institute of Steel Construction, INC, Chicago, Illinois.
- [2] AISC-LRFD-325(2001), AISC Manual of steel construction, American Institute of Steel Construction, 3rd edition.
- [3] BS 5950-2000: Part1 "Structural Use of Steelwork in Buildings" Code of practice for design in simple and continuous construction: hot rolled sections, British Standards Institution, London.
- [4] IS 800-1984, "Code of Practice for General Construction in Steel", First Revision, Bureau of Indian Standard, New-Delhi.
- [5] IS 800-2007, "Code of Practice for General Construction in Steel", Third Revision, Bureau of Indian Standard, New-Delhi.
- [6] N. Subramanian, "Design of Steel Structures" based on the limit state method of design as per the latest Indian standard code IS800:2007, Oxford University Press, New Delhi, 2008.

Acknowledgment: Acknowledging Dr. U. V. Dave, Professor, Department of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad, Gujarat, INDIA for providing valuable guidance during this research work.