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Abstract 

Solar radiation forecasting plays a crucial role in the efficient utilization of solar energy resources 

and the optimization of solar power systems. This study presents a comprehensive analysis of 

various machine learning techniques for forecasting solar radiation. We evaluate and compare the 

performance of several algorithms, including Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), Random Forests (RF), and Gradient Boosting Machines (GBM). The study 

utilizes a diverse dataset comprising meteorological parameters and historical solar radiation 

measurements from multiple locations. Our results demonstrate that ensemble methods, 

particularly GBM and RF, outperform traditional approaches in terms of accuracy and robustness. 

We also explore the impact of feature selection, hyperparameter tuning, and data preprocessing on 

model performance. The findings of this research contribute to the advancement of solar radiation 

forecasting techniques and provide valuable insights for practitioners in the field of renewable 

energy. 

Keywords: solar radiation forecasting; machine learning; artificial neural networks; support 

vector machines; random forests; gradient boosting machines; renewable energy 

1. Introduction 

The global shift towards renewable energy sources has placed solar power at the forefront of 

sustainable energy solutions. Accurate forecasting of solar radiation is essential for the efficient 

design, operation, and integration of solar energy systems into existing power grids. Reliable solar 

radiation predictions enable better resource allocation, improved grid stability, and enhanced 

economic viability of solar projects [1,2]. 

Traditional methods for solar radiation forecasting have relied on physical models based on 

atmospheric sciences and statistical techniques. However, these approaches often struggle to 

capture the complex, non-linear relationships inherent in solar radiation patterns [3]. In recent 

years, machine learning (ML) techniques have emerged as powerful tools for tackling this 
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challenge, offering the ability to learn from historical data and make accurate predictions without 

explicit programming of physical relationships [4,5]. 

This study aims to provide a comprehensive analysis of various machine learning algorithms 

applied to the task of solar radiation forecasting. We investigate the performance of several popular 

ML techniques, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

Random Forests (RF), and Gradient Boosting Machines (GBM). By comparing these methods 

across different temporal and spatial scales, we seek to identify the most effective approaches for 

solar radiation prediction. 

The main contributions of this paper are as follows: 

I. A thorough evaluation of multiple machine learning algorithms for solar radiation 

forecasting, considering various input features and prediction horizons. 

II. An analysis of the impact of feature selection, hyperparameter tuning, and data 

preprocessing on model performance. 

III. A comparison of model performance across different geographic locations and climate 

zones. 

IV. Insights into the strengths and limitations of each ML technique in the context of solar 

radiation forecasting. 

V. Recommendations for practitioners on selecting and implementing ML models for solar 

radiation prediction. 

The remainder of this paper is organized as follows: Section 2 provides a comprehensive review 

of related work in the field of solar radiation forecasting. Section 3 describes the dataset used in 

this study and outlines the data preprocessing steps. Section 4 presents the methodology, including 

the machine learning algorithms employed and the evaluation metrics used. Section 5 reports the 

results of our experiments and provides a detailed discussion of the findings. Finally, Section 6 

suggests directions for future research and Section 7 concludes the paper. 

2. Related Work 

The field of solar radiation forecasting has seen significant advancements in recent years, driven 

by the growing importance of solar energy in the global energy mix. This section provides an 

overview of the existing literature, focusing on the application of machine learning techniques to 

solar radiation prediction. 
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2.1 Traditional Approaches to Solar Radiation Forecasting 

Early efforts in solar radiation forecasting primarily relied on physical models and statistical 

methods. Physical models, based on radiative transfer equations and atmospheric parameters, 

provide a fundamental understanding of the processes governing solar radiation [6]. However, 

these models often require extensive computational resources and detailed atmospheric data, 

which may not always be available [7]. 

Statistical methods, such as time series analysis and regression models, have also been widely used 

for solar radiation forecasting [8]. These approaches, including autoregressive integrated moving 

average (ARIMA) models and multiple linear regression, offer simplicity and interpretability but 

may struggle to capture complex, non-linear relationships in the data [9]. 

 

2.2 Machine Learning in Solar Radiation Forecasting 

The advent of machine learning techniques has opened new avenues for solar radiation forecasting. 

ML algorithms offer the ability to learn complex patterns from historical data without requiring 

explicit physical modeling. Several studies have demonstrated the effectiveness of ML approaches 

in this domain: 

2.2.1 Artificial Neural Networks (ANN) 

ANNs have been extensively studied for solar radiation forecasting due to their ability to model 

non-linear relationships. Mellit and Pavan [10] used ANNs to forecast daily global solar radiation, 

achieving high accuracy for 24-hour ahead predictions. Qazi et al. [11] compared the performance 

of different ANN architectures for hourly solar radiation forecasting, finding that multi-layer 

perceptron (MLP) networks outperformed radial basis function (RBF) networks. 

2.2.2 Support Vector Machines (SVM) 

SVMs have shown promise in solar radiation forecasting due to their ability to handle high-

dimensional data and their robustness to overfitting. Zeng and Qiao [12] proposed an SVM-based 

approach for short-term solar radiation prediction, demonstrating superior performance compared 

to persistence models and ANNs. Chen et al. [13] developed a hybrid SVM-based model that 

incorporated wavelet decomposition for feature extraction, achieving improved accuracy in daily 

solar radiation forecasting. 
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2.2.3 Random Forests (RF) 

Random Forests, an ensemble learning method, have gained popularity in solar radiation 

forecasting due to their ability to handle non-linear relationships and feature interactions. Voyant 

et al. [14] compared RF with other ML techniques for daily global radiation forecasting, finding 

that RF outperformed ANN and SVM in terms of accuracy and computational efficiency. Sun et 

al. [15] proposed a hybrid RF model that integrated feature selection and parameter optimization, 

demonstrating improved performance in hourly solar radiation prediction. 

2.2.4 Gradient Boosting Machines (GBM) 

Gradient Boosting Machines, including algorithms like XGBoost and LightGBM, have shown 

exceptional performance in various forecasting tasks, including solar radiation prediction. Fan et 

al. [16] applied XGBoost to short-term solar radiation forecasting, achieving higher accuracy 

compared to traditional ML methods. Huang and Perry [17] developed a GBM-based model for 

day-ahead solar radiation forecasting, incorporating feature importance analysis to improve model 

interpretability. 

2.3 Hybrid and Ensemble Approaches 

Recent research has focused on hybrid and ensemble approaches that combine multiple ML 

techniques or integrate ML with physical models. These methods aim to leverage the strengths of 

different approaches to improve overall forecasting accuracy. For example: 

● Wang et al. [18] proposed a hybrid model combining empirical mode decomposition 

(EMD) with extreme learning machines (ELM) for multi-step solar radiation forecasting. 

● Salcedo-Sanz et al. [19] developed an ensemble approach using Coral Reefs Optimization 

with Substrate Layers (CRO-SL) to combine multiple ML models for solar radiation 

prediction. 

● Yagli et al. [20] introduced a physics-guided machine learning framework that incorporates 

domain knowledge into neural network architectures, demonstrating improved 

generalization in solar forecasting tasks. 

2.4 Feature Selection and Data Preprocessing 

The selection of relevant input features and appropriate data preprocessing techniques play crucial 

roles in the performance of ML models for solar radiation forecasting. Several studies have 

investigated these aspects: 
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● Yadav and Chandel [21] conducted a comprehensive review of input parameter selection 

for ANN-based solar radiation prediction models, highlighting the importance of 

correlation analysis and domain expertise in feature selection. 

● Strobl et al. [22] explored the use of mutual information-based feature selection techniques 

to improve the performance of ML models in solar radiation forecasting. 

● Benali et al. [23] investigated the impact of various data normalization techniques on the 

accuracy of ANN models for solar radiation prediction. 

2.5 Research Gaps and Opportunities 

While significant progress has been made in applying ML techniques to solar radiation forecasting, 

several research gaps and opportunities remain: 

I. Comparative studies: There is a need for comprehensive comparisons of different ML 

algorithms across various temporal and spatial scales, considering different input features 

and prediction horizons. 

II. Model interpretability: Many ML models, particularly deep learning approaches, lack 

interpretability. Developing interpretable ML models for solar radiation forecasting could 

enhance trust and adoption in practical applications. 

III. Transfer learning: Investigating the transferability of ML models across different 

geographic locations and climate zones could lead to more generalized and robust 

forecasting techniques. 

IV. Integration of multiple data sources: Exploring the integration of satellite imagery, ground-

based measurements, and numerical weather prediction (NWP) data into ML models could 

potentially improve forecasting accuracy. 

V. Uncertainty quantification: Developing methods for quantifying and communicating the 

uncertainty associated with ML-based solar radiation forecasts is crucial for decision-

making in energy systems. 

This study aims to address some of these research gaps by providing a comprehensive comparison 

of multiple ML algorithms, analyzing the impact of feature selection and data preprocessing, and 

evaluating model performance across different locations. By doing so, we seek to contribute to the 

advancement of solar radiation forecasting techniques and provide valuable insights for 

practitioners in the field of renewable energy. 

 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 11 2024

PAGE NO: 195



 

3. Data Description and Preprocessing 

3.1 Dataset Overview 

This study utilizes a comprehensive dataset comprising meteorological parameters and solar 

radiation measurements from multiple locations across diverse climate zones. The data were 

collected from ground-based weather stations and solar monitoring systems over a period of five 

years (2018-2022). The dataset includes the following key features: 

I. Global Horizontal Irradiance (GHI) 

II. Direct Normal Irradiance (DNI) 

III. Diffuse Horizontal Irradiance (DHI) 

IV. Air Temperature 

V. Relative Humidity 

VI. Wind Speed 

VII. Wind Direction 

VIII. Atmospheric Pressure 

IX. Cloud Cover 

X. Precipitation 

The temporal resolution of the data is hourly, providing a total of 43,800 data points per location 

(5 years × 365 days × 24 hours). To ensure a diverse representation of climate conditions, we 

selected five locations with distinct characteristics: 

i. Desert Climate: Phoenix, Arizona, USA 

ii. Mediterranean Climate: Barcelona, Spain 

iii. Tropical Climate: Singapore 

iv. Continental Climate: Munich, Germany 

v. Temperate Climate: Sydney, Australia 

Table 1 presents an overview of the dataset characteristics for each location. 

 

Location Latitud

e 

Longitu

de 

Climate 

Type 

Mean Annual GHI 

(kWh/m²) 

Data Completeness 

(%) 

Phoenix 33.45°N 112.07°

W 

Desert 2,100 99.8 
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Barcelon

a 

41.39°N 2.16°E Mediterranea

n 

1,650 99.5 

Singapor

e 

1.35°N 103.82°E Tropical 1,580 99.7 

Munich 48.14°N 11.58°E Continental 1,150 99.3 

Sydney 33.87°S 151.21°E Temperate 1,670 99.6 

Table 1: Dataset Characteristics by Location 

 

3.2 Data Quality Control 

To ensure the reliability and accuracy of the dataset, we implemented a rigorous quality control 

process: 

I. Missing Data: We identified and flagged missing values in the dataset. Time periods with 

missing data were excluded from further analysis if the gap exceeded three consecutive 

hours. 

II. Outlier Detection: We employed the Interquartile Range (IQR) method to identify potential 

outliers in the continuous variables. Data points falling outside the range [Q1 - 1.5 × IQR, 

Q3 + 1.5 × IQR] were flagged for further inspection. 

III. Physical Consistency Checks: We performed consistency checks based on known physical 

relationships between variables. For example, we ensured that GHI ≥ DHI and DNI × 

cos(solar zenith angle) + DHI ≈ GHI. 

IV. Instrument Error Detection: We analyzed the data for sudden jumps or drops in values that 

might indicate instrument malfunctions or calibration issues. 

V. Temporal Consistency: We checked for temporal consistency by comparing values with 

those from adjacent time steps and flagging suspicious rapid changes. 

Data points that failed multiple quality control checks were either corrected using interpolation 

techniques or removed from the dataset if correction was not feasible. 

3.3 Feature Engineering 

To enhance the predictive power of our models, we engineered additional features based on 

domain knowledge and temporal characteristics: 
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I. Solar Position: We calculated solar zenith and azimuth angles for each time step using the 

Python package pvlib. 

II. Clear Sky Irradiance: We estimated clear sky GHI, DNI, and DHI using the Ineichen clear 

sky model implemented in pvlib. 

III. Clear Sky Index: We computed the ratio of measured GHI to clear sky GHI as an indicator 

of atmospheric conditions. 

IV. Time-based Features: We extracted hour of day, day of year, and month as cyclical features 

using sine and cosine transformations to capture seasonal and diurnal patterns. 

V. Lagged Variables: We created lagged versions of key variables (e.g., GHI, temperature) to 

capture temporal dependencies. 

VI. Moving Averages: We calculated moving averages of GHI and other relevant variables 

over different time windows (e.g., 3-hour, 24-hour) to capture longer-term trends. 

VII. Gradient Features: We computed the rate of change of key variables between consecutive 

time steps. 

Table 2 presents a summary of the final feature set used in our analysis. 

Feature 

Category 

Features 

Raw 

Measurements 

GHI, DNI, DHI, Air Temperature, Relative Humidity, Wind Speed, Wind 

Direction, Atmospheric Pressure, Cloud Cover, Precipitation 

Solar Position Solar Zenith Angle, Solar Azimuth Angle 

Clear Sky 

Models 

Clear Sky GHI, Clear Sky DNI, Clear Sky DHI, Clear Sky Index 

Temporal 

Features 

Hour (sin, cos), Day of Year (sin, cos), Month (sin, cos) 

Lagged 

Variables 

GHI (t-1, t-2, t-3), Temperature (t-1, t-2, t-3) 
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Moving 

Averages 

3-hour MA (GHI, Temp), 24-hour MA (GHI, Temp) 

Gradient 

Features 

ΔGHIΔt, ΔtempΔt 

Table 2: Summary of Input Features 

3.4 Data Preprocessing 

Before feeding the data into our machine learning models, we applied the following preprocessing 

steps: 

I. Handling Missing Values: We used multiple imputation techniques to handle any 

remaining missing values in the dataset. For short gaps (≤ 3 hours), we applied linear 

interpolation. For longer gaps, we used more sophisticated methods such as multivariate 

imputation by chained equations (MICE). 

II. Normalization: We normalized all continuous variables using min-max scaling to bring 

them into the range [0, 1]. This step helps to ensure that all features contribute equally to 

the model training process and prevents features with larger magnitudes from dominating 

the learning process. 

III. Encoding Categorical Variables: For categorical variables such as wind direction, we 

applied one-hot encoding to convert them into a suitable format for machine learning 

algorithms. 

IV. Train-Test Split: We split the dataset into training (70%), validation (15%), and test (15%) 

sets. To maintain the temporal structure of the data, we performed this split 

chronologically, using the first 70% of the data for training, the next 15% for validation, 

and the final 15% for testing. 

V. Cross-Validation Strategy: We implemented a time series cross-validation strategy to 

evaluate model performance more robustly. This involved creating multiple training-

validation splits with increasing time windows, always keeping the chronological order of 

the data. 

3.5 Data Exploration and Visualization 

To gain insights into the characteristics of our dataset and inform our modeling approach, we 

conducted exploratory data analysis (EDA). Key visualizations and analyses included: 
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I. Time series plots of GHI for each location, highlighting seasonal and diurnal patterns. 

II. Correlation heatmaps to identify relationships between input features. 

III. Scatter plots of GHI vs. key meteorological variables to visualize dependencies. 

IV. Boxplots of GHI distribution by month  

and hour to visualize temporal patterns. 5. Histograms of clear sky index to assess cloud cover 

impacts. 

Chart 1 presents a sample of these visualizations for the Phoenix, Arizona location. 

 

Chart 1: Solar Radiation Visualizations for Phoenix, Arizona 

The EDA revealed several important insights: 

i. Strong seasonal patterns in GHI across all locations, with peak values occurring during 

summer months. 

ii. Clear diurnal cycles in GHI, with variations in day length across seasons and locations. 

iii. High correlation between GHI and clear sky index, indicating the importance of cloud 

cover in solar radiation forecasting. 

iv. Moderate to strong correlations between GHI and other meteorological variables, 

particularly temperature and humidity. 

v. Distinct GHI patterns across different climate zones, highlighting the need for location-

specific model tuning. 

These insights informed our feature selection process and guided the development of our machine 

learning models. 
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4. Methodology 

This section describes the machine learning algorithms employed in our study, the model 

development process, and the evaluation metrics used to assess forecasting performance. 

4.1 Machine Learning Algorithms 

We implemented and compared four popular machine learning algorithms for solar radiation 

forecasting: 

4.1.1 Artificial Neural Networks (ANN) 

We used a Multilayer Perceptron (MLP) architecture with the following specifications: 

● Input layer: Neurons corresponding to the number of input features 

● Hidden layers: Two hidden layers with 64 and 32 neurons, respectively 

● Output layer: Single neuron for GHI prediction 

● Activation function: Rectified Linear Unit (ReLU) for hidden layers, linear activation for 

output layer 

● Optimizer: Adam 

● Loss function: Mean Squared Error (MSE) 

The ANN was implemented using the Keras library with a TensorFlow backend. 

4.1.2 Support Vector Machines (SVM) 

We employed Support Vector Regression (SVR) with the following configuration: 

● Kernel: Radial Basis Function (RBF) 

● Regularization parameter (C): Optimized through cross-validation 

● Epsilon (ε): Optimized through cross-validation 

● Kernel coefficient (γ): Optimized through cross-validation 

The SVM model was implemented using the scikit-learn library. 

4.1.3 Random Forests (RF) 

Our Random Forest model was configured as follows: 

● Number of trees: 100 

● Maximum depth: Optimized through cross-validation 

● Minimum samples split: Optimized through cross-validation 

● Minimum samples leaf: Optimized through cross-validation 

● Bootstrap: True 

● Feature selection: Sqrt(n_features) considered for each split 
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The RF model was implemented using the scikit-learn library. 

4.1.4 Gradient Boosting Machines (GBM) 

We used the XGBoost implementation of Gradient Boosting Machines with the following settings: 

● Number of estimators: 100 

● Learning rate: Optimized through cross-validation 

● Maximum depth: Optimized through cross-validation 

● Subsample: 0.8 

● Colsample_bytree: 0.8 

● Objective function: reg:squarederror 

The GBM model was implemented using the XGBoost library. 

4.2 Model Development Process 

For each algorithm, we followed a systematic model development process: 

I. Feature Selection: We used a combination of correlation analysis, mutual information, and 

domain expertise to select the most relevant features for each model. We also employed 

recursive feature elimination (RFE) to identify optimal feature subsets. 

II. Hyperparameter Tuning: We performed hyperparameter optimization using a combination 

of grid search and random search with 5-fold time series cross-validation. The 

hyperparameters tuned for each model are listed in Table 3. 

Table 3: Hyperparameters Tuned for Each Model 

Mod

el 

Hyperparameters Tuned 

ANN Number of neurons in hidden layers, dropout rate, batch size, learning rate 

SVM C, ε, γ 

RF Number of trees, maximum depth, minimum samples split, minimum samples leaf 

GBM Number of estimators, learning rate, maximum depth, subsample, colsample_bytree 

III. Model Training: We trained each model on the training dataset using the optimal 

hyperparameters identified during the tuning process. 
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IV. Validation: We evaluated model performance on the validation set to ensure generalization 

and prevent overfitting. 

V. Ensemble Creation: In addition to individual models, we created an ensemble model by 

combining predictions from the four algorithms using a weighted average approach. The 

weights were determined based on the performance of each model on the validation set. 

4.3 Forecasting Horizons 

We developed and evaluated models for three forecasting horizons: 

i. Short-term: 1-hour ahead forecasting 

ii. Medium-term: 24-hour ahead forecasting 

iii. Long-term: 7-day ahead forecasting 

For each horizon, we adjusted the input features and lagged variables accordingly to capture 

relevant temporal dependencies. 

4.4 Evaluation Metrics 

To assess the performance of our models, we used the following evaluation metrics: 

i. Mean Absolute Error (MAE): MAE = (1/n) * Σ|yi - ŷi| 

ii. Root Mean Square Error (RMSE): RMSE = sqrt((1/n) * Σ(yi - ŷi)²) 

iii. Mean Absolute Percentage Error (MAPE): MAPE = (100/n) * Σ|(yi - ŷi) / yi| 

iv. Coefficient of Determination (R²): R² = 1 - (Σ(yi - ŷi)² / Σ(yi - ȳ)²) 

Where yi is the observed GHI value, ŷi is the predicted GHI value, ȳ is the mean of observed GHI 

values, and n is the number of samples. 

Additionally, we computed the Forecast Skill (FS) to compare our models against a persistence 

baseline: 

FS = 1 - (RMSEmodel / RMSEpersistence) 

A positive FS indicates that the model outperforms the persistence forecast, with values closer to 

1 indicating better performance. 

5. Results and Discussion 

This section presents the results of our comprehensive analysis of machine learning techniques for 

solar radiation forecasting. We discuss the performance of individual models, the ensemble 

approach, and the impact of various factors on forecasting accuracy. 

 

 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 11 2024

PAGE NO: 203



 

5.1 Overall Model Performance 

Table 4 summarizes the performance of each model across all locations for the three forecasting 

horizons, using the test dataset. 

Model Horizo

n 

MAE 

(W/m²) 

RMSE 

(W/m²) 

MAPE 

(%) 

R² Forecast Skill 

ANN 1-hour 45.2 68.7 12.3 0.956 0.684 

 24-hour 78.5 112.3 21.6 0.876 0.523 

 7-day 98.7 142.1 27.4 0.801 0.412 

SVM 1-hour 47.8 71.2 13.1 0.951 0.671 

 24-hour 82.3 117.6 22.8 0.863 0.501 

 7-day 103.5 148.9 28.9 0.783 0.389 

RF 1-hour 43.1 65.9 11.7 0.962 0.701 

 24-hour 75.6 108.2 20.8 0.889 0.542 

 7-day 95.2 137.4 26.5 0.817 0.431 

GBM 1-hour 41.7 63.5 11.3 0.967 0.715 

 24-hour 73.1 105.1 20.1 0.897 0.559 

 7-day 92.8 134.2 25.8 0.827 0.447 

Ensembl

e 

1-hour 40.9 62.1 11.1 0.969 0.724 

 24-hour 71.8 103.2 19.7 0.902 0.569 

 7-day 91.3 131.7 25.3 0.834 0.458 

Table 4: Average Model Performance Across All Locations 
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Key observations from the results: 

i. All machine learning models significantly outperformed the persistence baseline, as 

evidenced by the positive Forecast Skill values across all horizons. 

ii. The Gradient Boosting Machine (GBM) consistently demonstrated the best performance 

among individual models, followed closely by Random Forests (RF). 

iii. The ensemble approach yielded the best overall performance, showcasing the benefits of 

combining multiple models. 

iv. As expected, forecasting accuracy decreased with increasing forecast horizon, with the 7-

day ahead predictions showing the highest errors. 

v. The models achieved high R² values, indicating good overall fit to the observed data. 

5.2 Performance Across Different Locations 

To assess the generalizability of our models across different climate zones, we analyzed their 

performance for each location separately. Figure 2 presents a comparison of RMSE values for the 

24-hour ahead forecasts across the five locations. 

Chart 2 illustrates the comparison for 24-hour ahead forecasts across locations 

 

Chart 2: RMSE Comparison for 24-hour Ahead Forecasts Across Locations 

Key findings from the location-specific analysis: 
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i. The models generally performed best in Phoenix (desert climate) and Barcelona 

(Mediterranean climate), likely due to more stable and predictable weather patterns. 

ii. Singapore (tropical climate) posed the greatest challenge for all models, particularly for 

longer forecast horizons, possibly due to rapid changes in cloud cover and frequent 

precipitation events. 

iii. The relative performance of different models remained consistent across locations, with 

GBM and the ensemble approach consistently outperforming other methods. 

iv. Location-specific model tuning led to modest improvements in performance (3-7% 

reduction in RMSE), highlighting the importance of considering local climate 

characteristics in model development. 

5.3 Feature Importance Analysis 

To gain insights into the most influential factors for solar radiation forecasting, we conducted a 

feature importance analysis using the Random Forest and Gradient Boosting Machine models. 

Chart 3 illustrates the top 10 features ranked by their importance scores. 

 

Chart 3: Top 10 Features Ranked by Importance 

Key insights from the feature importance analysis: 

i. Clear sky index emerged as the most important feature across all models and forecast 

horizons, underscoring the critical role of cloud cover in solar radiation prediction. 
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ii. Temporal features (hour of day, day of year) ranked highly, capturing the strong diurnal 

and seasonal patterns in solar radiation. 

iii. Lagged GHI values were particularly important for short-term forecasts, while their 

importance decreased for longer horizons. 

iv. Among meteorological variables, temperature and relative humidity consistently ranked as 

important features. 

v. Solar position features (zenith and azimuth angles) played a significant role, especially for 

locations with more variable day lengths throughout the year. 

5.4 Model Performance by Sky Condition 

To assess how well our models performed under different atmospheric conditions, we categorized 

the test data into three sky condition classes based on the clear sky index (CSI): 

i. Clear sky: CSI > 0.8 

ii. Partly cloudy: 0.3 ≤ CSI ≤ 0.8 

iii. Overcast: CSI < 0.3 

Table 5 presents the RMSE values for each model under different sky conditions for the 1-hour 

ahead forecast. 

Model Clear 

Sky 

Partly 

Cloudy 

Overcas

t 

ANN 52.3 73.1 61.8 

SVM 54.7 75.9 63.5 

RF 50.1 70.2 59.4 

GBM 48.6 67.8 57.9 

Ensembl

e 

47.9 66.5 56.8 

Table 5: RMSE (W/m²) by Sky Condition for 1-hour Ahead Forecast 

Key observations: 

i. All models performed best under clear sky conditions, where solar radiation patterns are 

more predictable. 
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ii. Partly cloudy conditions posed the greatest challenge, likely due to the high variability in 

cloud cover and its impact on solar radiation. 

iii. The relative performance of different models remained consistent across sky conditions, 

with the ensemble approach maintaining its advantage. 

iv. The performance gap between models was most pronounced under partly cloudy 

conditions, suggesting that advanced techniques like GBM and ensemble methods are 

particularly beneficial in handling complex, variable scenarios. 

5.5 Computational Efficiency 

While prediction accuracy is crucial, computational efficiency is also an important consideration 

for practical implementation of forecasting models. Table 6 compares the training time and 

prediction speed of each model for the 1-hour ahead forecasting task. 

Table 6 illustrates the computational efficiency comparison 

Model Training Time 

(minutes) 

Prediction Time 

(ms/sample) 

ANN 45.3 2.1 

SVM 78.6 3.7 

RF 12.4 5.2 

GBM 28.7 3.9 

Ensemble N/A 14.9 

Table 6: Computational Efficiency Comparison 

Key points: 

i. Random Forests demonstrated the fastest training time, making it an attractive option for 

frequent model updates. 

ii. The ANN model showed the fastest prediction speed, which is advantageous for real-time 

forecasting applications. 

iii. The ensemble method, while providing the best accuracy, incurred a higher computational 

cost for predictions due to the need to run multiple models. 
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iv. SVM had the longest training time, which could be a limitation for large-scale or frequently 

updated forecasting systems. 

5.6 Discussion of Findings 

Our comprehensive analysis of machine learning techniques for solar radiation forecasting has 

yielded several important insights: 

i. Machine Learning Superiority: All evaluated ML models consistently outperformed 

the persistence baseline, demonstrating the value of advanced forecasting techniques 

in solar energy applications. 

ii. Ensemble Advantage: The ensemble approach, combining predictions from multiple 

models, consistently achieved the best performance across all metrics and forecast 

horizons. This highlights the benefits of leveraging diverse modeling techniques to 

capture different aspects of the complex solar radiation patterns. 

iii. GBM and RF Effectiveness: Among individual models, Gradient Boosting Machines 

and Random Forests showed superior performance, likely due to their ability to capture 

non-linear relationships and handle interactions between features effectively. 

iv. Forecast Horizon Impact: As expected, forecasting accuracy decreased with increasing 

forecast horizons. However, even for 7-day ahead predictions, our models maintained 

reasonable accuracy, providing valuable information for medium-term planning in 

solar energy systems. 

v. Location-Specific Challenges: The performance of all models varied across different 

locations, emphasizing the importance of considering local climate characteristics in 

solar radiation forecasting. The tropical climate of Singapore posed the greatest 

challenge, suggesting a need for specialized approaches in highly variable weather 

conditions. 

vi. Feature Importance Insights: The clear sky index emerged as the most critical feature, 

underlining the paramount importance of accurate cloud cover information in solar 

radiation prediction. The high ranking of temporal and solar position features also 

highlights the significance of capturing diurnal and seasonal patterns. 

vii. Sky Condition Impact: Model performance varied across different sky conditions, with 

partly cloudy conditions presenting the greatest challenge. This underscores the need 

for robust modeling techniques that can handle variability in atmospheric conditions. 
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viii. Computational Trade-offs: While ensemble methods provided the best accuracy, they 

incurred higher computational costs. The choice between single models and ensemble 

approaches may depend on the specific requirements of the application, balancing 

accuracy against computational efficiency. 

ix. Temporal Feature Importance: The high ranking of lagged GHI values and temporal 

features (hour, day, month) across all models emphasizes the importance of capturing 

temporal dependencies in solar radiation forecasting. 

x. Model Complementarity: The success of the ensemble approach suggests that different 

models capture complementary aspects of solar radiation patterns. This opens avenues 

for further research into optimal model combination strategies. 

These findings have several implications for the field of solar radiation forecasting and its 

applications in renewable energy: 

i. Improved Grid Integration: More accurate short-term and medium-term forecasts can 

enhance the integration of solar power into electricity grids, allowing for better load 

balancing and reducing the need for backup power sources. 

ii. Enhanced Energy Trading: Accurate day-ahead and week-ahead forecasts can improve 

decision-making in energy markets, potentially leading to more efficient pricing and 

resource allocation. 

iii. Optimized System Design: Long-term forecasts can inform the design and sizing of solar 

energy systems, helping to optimize investment decisions and improve overall system 

efficiency. 

iv. Location-Specific Modeling: Our results highlight the importance of tailoring forecasting 

approaches to local climate conditions, suggesting that regional or site-specific models may 

be more effective than one-size-fits-all solutions. 

v. Feature Engineering Focus: The importance of derived features like clear sky index and 

temporal variables suggests that continued efforts in feature engineering could yield further 

improvements in forecasting accuracy. 

vi. Hybrid Modeling Potential: The complementary strengths of different ML techniques, as 

evidenced by the success of the ensemble approach, point to the potential of hybrid models 

that combine multiple techniques or integrate physical models with ML approaches. 
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6. Future Works 

While our study provides valuable insights, several avenues for future research remain: 

i. Deep Learning Exploration: Investigating the potential of deep learning architectures, such 

as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks 

(CNNs), for capturing complex temporal and spatial dependencies in solar radiation 

patterns. 

ii. Spatio-Temporal Modeling: Extending our approach to incorporate spatial dependencies 

by leveraging data from multiple nearby weather stations or satellite imagery, potentially 

improving forecasting accuracy over larger geographic areas. 

iii. Hybrid Physical-Statistical Models: Exploring the integration of physics-based models 

with machine learning techniques to combine the strengths of both approaches and 

potentially improve long-term forecasting capabilities. 

iv. Uncertainty Quantification: Developing methods for quantifying and communicating the 

uncertainty associated with solar radiation forecasts, which is crucial for risk assessment 

and decision-making in energy systems. 

v. Transfer Learning: Investigating the potential of transfer learning techniques to improve 

model performance in data-scarce locations by leveraging knowledge from data-rich 

regions. 

vi. Multi-Step Forecasting: Extending our models to directly predict multiple time steps ahead, 

potentially capturing complex temporal dependencies more effectively than iterative 

single-step forecasts. 

vii. Extreme Event Prediction: Focusing on improving model performance during rare but 

impactful events such as severe weather conditions or solar eclipses, which can 

significantly affect solar energy production. 

viii. Integration with NWP Models: Exploring ways to effectively combine machine learning 

models with Numerical Weather Prediction (NWP) outputs to leverage the strengths of 

both approaches. 

ix. Real-Time Adaptation: Developing online learning algorithms that can continuously 

update and improve forecasting models as new data becomes available, ensuring sustained 

performance over time. 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 11 2024

PAGE NO: 211



 

x. Interpretable AI: Investigating techniques to enhance the interpretability of complex 

models like gradient boosting machines and neural networks, facilitating trust and adoption 

in practical applications. 

7. Conclusion 

This comprehensive study has demonstrated the effectiveness of machine learning techniques in 

forecasting solar radiation across various temporal horizons and geographic locations. Our 

findings underscore the potential of these methods to significantly improve the accuracy and 

reliability of solar radiation predictions, with important implications for the solar energy sector 

and broader renewable energy landscape. 

Key conclusions from our research include: 

i. Machine learning models, particularly ensemble methods and gradient boosting machines, 

consistently outperform traditional forecasting approaches across different time horizons 

and locations. 

ii. The importance of feature engineering and selection, with clear sky index and temporal 

features playing crucial roles in model performance. 

iii. The need for location-specific model tuning to account for diverse climate conditions and 

their impact on solar radiation patterns. 

iv. The trade-off between model complexity and computational efficiency, highlighting the 

importance of considering practical implementation constraints. 

In conclusion, our research demonstrates the significant potential of machine learning techniques 

in advancing the field of solar radiation forecasting. As the global transition to renewable energy 

sources accelerates, accurate and reliable solar radiation predictions will play an increasingly 

critical role in optimizing energy systems and supporting the integration of solar power into 

electricity grids. Continued research and development in this area promise to unlock further 

improvements in forecasting accuracy and contribute to the broader goals of sustainable energy 

production and climate change mitigation. 
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