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Abstract  

Water contamination by heavy metals remains a pressing global concern due to its serious 

environmental and public health implications. Among these pollutants, copper is particularly 

noteworthy owing to its extensive industrial application and potential toxicity at elevated 

concentrations. Traditional treatment methods such as chemical precipitation, ion exchange, 

and membrane filtration often face limitations including high operational costs, poor efficiency 

at trace concentrations, and the generation of secondary waste. In recent years, biochar—a 

carbon-rich, porous material derived from the pyrolysis of diverse biomass sources—has 

gained attention as a cost-effective and sustainable alternative for copper removal from aqueous 

environments. This review presents a comprehensive overview of the current advancements in 

copper adsorption using biochar. Key aspects such as biochar production methods, 

physicochemical properties, and various characterization techniques are discussed in detail. 

The influence of parameters like surface area, pore structure, surface functionality, and charge 

on adsorption efficiency is critically analysed. Mechanistic insights into copper uptake—

including ion exchange, surface complexation, electrostatic interactions, and precipitation—

are thoroughly examined. The review further investigates how operational factors such as pH, 

initial copper concentration, contact time, temperature, and biochar dosage affect adsorption 

performance. In addition, adsorption kinetics, isotherm models, and thermodynamic analyses 

are evaluated to better understand the interaction between copper ions and biochar surfaces. 

Emphasis is also placed on biochar regeneration and reusability, comparative performance 

across different feedstocks, and its effectiveness relative to conventional adsorbents. Finally, 
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the review identifies existing challenges and knowledge gaps while underscoring the need for 

standardised protocols, field-scale validation, and advancement toward commercial-scale 

applications to fully harness the potential of biochar in sustainable copper remediation 

technologies. 
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1. Introduction 

Water contamination is a worldwide issue that endangers public health as well as the 

sustainability of the environment. Heavy metals like copper are among the plenty potentially 

dangerous substances that have contaminated water bodies due to mining, industrial operations, 

and agricultural practices. These pollutants can accumulate in food chains, remain in aquatic 

environments, and eventually impact ecosystems as well as human populations worldwide (1). 

Even though copper is a necessary micronutrient, copper becomes dangerous at high 

concentrations. Streams, groundwater, and sediments can become contaminated by excessive 

copper in water due to mining, smelting, and industrial discharges (2,3). Aquatic life faces 

moderate or severe ecological threats due to copper's ability to disrupt biological processes and 

harm biota (1). The important cause of human health hazards is drinking tainted water, which 

can have both non-cancer and cancerous effects, particularly in areas close to industrial or 

mining sites (4). Children are especially at risk, as some studies show that in some places, 

hazard index values are greater than acceptable limits (3). Long-term exposure to water tainted 

with copper may lead to digestive problems and, in extreme situations, liver or kidney damage 

(5). The necessity of routine monitoring and efficient remediation is highlighted by the 

persistence of copper in sediments and its potential to surpass established safety guidelines (6). 

Chemical precipitation, ion exchange, membrane filtration (including ultrafiltration, 

nanofiltration, and reverse osmosis), and electrochemical techniques are examples of 

conventional methods for extracting copper from water (2). Although these methods can be 

effective, they frequently have serious drawbacks. Disadvantages include high operating costs, 

inefficiency at low copper concentrations, and the production of secondary pollutants, such as 

toxic sludge (6). Such challenges emphasise the need for more economical, efficient, and 

sustainable copper removal technology, especially as regulatory requirements tighten and the 

demand for clean water rises internationally (7). 

Biochar is a carbon-rich substance. The pyrolysis of biomass, which entails heating organic 

waste products without oxygen, yields biochar. Through this method, agricultural and other 

organic wastes are converted into a stable, porous carbon structure that can be used in 

environmental applications, especially as a heavy metal adsorbent (8,9).  

Biochar is very effective at adsorption because of a number of important physicochemical 

characteristics. These consist of substantial porosity, a high specific surface area, and a large 
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number of surface functional groups (such carboxyl, hydroxyl, and aromatic rings) (9–12). By 

introducing more functional groups and increasing its surface area, biochar can be modified 

chemically or physically to improve its adsorption capacity (11,13). Through processes like 

physical adsorption, ion exchange, surface complexation, and electrostatic interactions, these 

characteristics improve its capacity to interact with and immobilise heavy metal ions (11,13).  

Biochar is made from renewable biomass sources and can be made from industrial or 

agricultural waste. Biochar is regarded as an environmentally friendly material that lessens the 

burden on the environment (8,14). When compared to traditional adsorbents, its manufacturing 

and use are typically less expensive, making it suitable for extensive soil and water remediation 

operations (8,15). Furthermore, the usage of biochar can aid in carbon sequestration, enhancing 

its environmental advantages (15,16). 

Biochar’s special chemistry and structure are responsible for efficiently adsorbing a variety of 

heavy metals from contaminated soils and water, such as lead, cadmium, arsenic, mercury, 

copper, and zinc (8–10,12,13,15,17). By using modification techniques like impregnation with 

metal oxides or combining with other materials, its adsorption performance can be further 

improved (10,11,13,17).  

This review's objective is to provide an overview and critical assessment of recent studies on 

the application of biochar for copper adsorption from aqueous solutions. The review will cover 

the regeneration and reusability of biochar, which are essential for realistic and sustainable 

water treatment applications, as well as the mechanisms behind copper removal by biochar, the 

variables affecting adsorption efficiency, the different types of biochar and its modifications, 

and biochar’s comparison with other adsorbents. Key aspects like adsorption mechanisms, such 

as cation exchange, surface complexation, electrostatic interactions, and precipitation which 

are considered as primary pathways will be explored. The review will go over how copper 

adsorption capacity and efficiency are affected by variables such as feedstock, pyrolysis 

temperature, pH, adsorbent dosage, and the presence of competing ions. Various types of 

biochar as well as modification and composite will be explored. The regeneration and 

reusability of biochar will also be checked. Future research paths and real-world uses of biochar 

in the cleanup of copper-contaminated water will be addressed by this review article 

investigation. 
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Figure 1. Number of documents published per year on copper adsorption using biochar. 

 

Figure 2. Field of research on copper adsorption using biochar  
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Figure 3. Number of documents published  in various countries  on copper adsorption using 

biochar. 

A Scopus database search was conducted using the key words “copper “ AND “Adsorption” 

and “biochar” or activated carbon” . The Figures 1, 2 and 3 shows the results. As shown in 

figures above the research output on copper adsorption using biochar has grown significantly 

during the past 30 years. Although there were almost no studies on this topic before 2000, the 

number of publications has grown exponentially since 2010, particularly after 2015. By 2025, 

over 300 papers are published annually, which indicates that biochar is a sustainable and an 

environmentally friendly adsorbent for cleaning up heavy metals such as copper.  Most of the 

publications were under the field of Environmental science (25.6%), followed by chemistry 

(14.1%), and chemical engineering (14.1%).b China has the most publications in over 1000 

publications, whereas United states and India had around 300 publications followed by South 

Korea and Iran which have around 150 publications. This indicates that there is worldwide 

interest in use of biochar as an adsorbent for removal for copper.  

 

The purpose of this review is to give readers a thorough understanding of biochar's use as an 

adsorbent in the removal of copper from aqueous environments. Copper adsorption 

mechanisms, affecting variables (temperature, pH, and biochar modification), comparison of 

the effectiveness of various biochars, obstacles, gaps in information, and potential paths will 

be addressed. 
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2. Biochar production and sources  

A carbon-rich material called biochar is created by thermochemically transforming several 

kinds of biomass. The selection of the precursors and the particular production conditions—

particularly the pyrolysis process—have a significant impact on its characteristics and efficacy. 

It is possible to create biochar from a variety of biomass sources, such as wood, manure, crop 

residues, and from other kinds of organic wastes. Lignocellulosic biomass, which is made up 

of cellulose, hemicellulose, and lignin, is frequently utilised because of its quantity and 

advantageous qualities for the creation of biochar (18–22). The physicochemical characteristics 

of the final biochar, including its carbon content, surface area, and ability to retain nutrients, 

are greatly influenced by the type of feedstock used. Choosing the right feedstock is essential 

to customising biochar for a given use (19,21,23,24). The three primary processes for 

producing biochar are hydrothermal carbonisation, gasification, and pyrolysis. The most 

popular method is pyrolysis, or heat breakdown without oxygen (18,20,24). Temperature, 

heating rate, and residence duration are important variables influencing the yield and quality 

of biochar. While lower temperatures favour higher yields with distinct structural features, 

higher temperatures often result in biochar with increased surface area and porosity but lower 

yield (19,24). The characteristics of biochar can be further altered by different reactor designs 

and physical or chemical activation techniques, increasing its suitability for uses such as energy 

storage, soil amendment, and pollutant adsorption (18,25). A variety of organic resources can 

be used to make biochar, but common sources include wood, dung, and agricultural waste. 

Both the feedstock and the particular pyrolysis conditions utilised during production have a 

significant impact on the characteristics of biochar, enabling customisation to satisfy various 

industrial and environmental requirements. 

3. Notable properties of biochar and suitability 

The efficiency of biochar in agricultural and environmental applications is directly related to 

its pH of zero-point charge (pHpzc), surface area, porosity, surface functional groups, and 

surface charge. These qualities are highly modifiable by feedstock selection as shown in table 

1, pyrolysis temperatures, and post-treatment procedures, directly influencing biochar’s 

adsorption and remediation capacities. For adsorption applications, a high surface area and 
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well-developed porosity are essential. The pyrolysis temperature and the kind of biomass 

feedstock have the most effects on these characteristics; biochars with lignocellulosic materials 

and moderate-to-high temperatures (400–900°C) have more developed pore structures and 

bigger surface areas (26–28). Additional treatments such as chemical activation, ball milling, 

and templating can further enhance surface area and porosity, exposing more adsorption sites. 

Chemical activation, ball milling, and templating are a few more processes that can increase 

surface area and porosity and reveal more adsorption sites (26,28,29). FTIR and XPS 

investigations can identify the different functional groups (such as carboxylic, phenolic, 

lactonic, and phosphate) present on the surfaces of biochar (4-7,9,10). The feedstock and 

pyrolysis temperature affect the number and kind of these groups. Higher temperatures 

decrease these but may add new functionalities, whereas lower temperatures favour oxygen-

containing groups (carboxyl, hydroxyl) (30,31). In order to facilitate hydrogen bonding, 

electrostatic interactions, and surface complexation with pollutants, surface functional groups 

are essential for adsorption processes (30,32,33). The amount of ash and the presence of 

functional groups determine surface charge, which varies with pyrolysis temperature. Because 

there are more oxygen-containing groups at lower temperatures, there is a greater negative 

surface charge; at higher temperatures, this charge decreases (34). The pHpzc indicates the pH 

at which the biochar surface has zero net charge (27). For the adsorption of cationic pollutants, 

biochars with a high cation exchange capacity (CEC) and negative surface charge are ideal, 

whereas biochars with a greater pHpzc and positive charge are preferable for anionic 

contaminants. Through feedstock selection, pyrolysis conditions, and post-treatments, the 

surface area, porosity, functional groups, surface charge, and pHpzc of biochar can be tailored 

(27). The combination of these characteristics establishes whether biochar is appropriate for a 

certain adsorption and remediation activity. 

Table: 1 Influence of feedstock composition on porosity and surface functionality 

Feedstock 

Component 

 

Effect on 

Porosity/Surface Area 

Effect on Surface 

Functionality 

Reference 

High 

Lignin/Cellulose 

(Woody) 

Greater surface area and 

porosity, especially at 

moderate/high pyrolysis 

temperature 

Functional groups are fewer 

but more stable and 

aromatic. 

 

(35–37) 
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Table 2: Comparison of low-temperature vs. high-temperature biochars for cu removal from 

aqueous solution. 

Outcome Low-Temperature 

Biochar(≤500°C) 

 

High-Temperature 

Biochar (≥700°C) 

Reference 

Surface Functional 

Groups 

Higher (carboxyl, 

hydroxyl) 

Lower (depleted by 

pyrolysis) 

(41,42) 

Main Removal 

Mechanism 

Complexation with 

surface groups, ion 

exchange 

Mineral 

precipitation, some 

complexation 

(44,45) 

Surface Area Moderate Higher (44,45) 

Effect of DOM Enhances Cu binding Less pronounced (41) 

High Ash 

(Manure, 

Sludge) 

Eliminating ash can 

increase porosity; too 

much ash can obstruct 

pores. 

 

Surface functional groups 

are abundant and beneficial 

for cationic adsorption. 

 

(35,36,38) 

Agricultural 

Waste (Straw, 

Husk) 

Moderate porosity that 

can be enhanced through 

activation or 

modification 

 

Surface functional groups 

are abundant and beneficial 

for cationic adsorption. 

 

(35,39,40) 

Pyrolysis 

Temperature 

Higher temperatures 

reduce functional groups 

and increase porosity. 

 

Lower porosity and 

functional groups are 

preserved at lower 

temperatures. 

 

(36,37,39) 
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4. Main mechanisms of copper adsorption  

As shown in Figure 4, several important mechanisms are involved in copper adsorption onto 

different adsorbents, and each one adds to the total removal efficiency and selectivity.  

 

Figure 4. Types of adsorption mechanisms for copper adsorption on biochar 

4.1 Ion Exchange 

Ion exchange plays a crucial role in the adsorption of copper onto biochar, especially at lower 

copper concentrations. During this interaction, copper ions (Cu²⁺) present in the solution 

displace other positively charged ions—such as calcium (Ca²⁺), potassium (K⁺), or magnesium 

(Mg²⁺)—that are loosely attached to the negatively charged sites on the surface of the biochar. 

These negatively charged sites arise primarily from oxygen-containing functional groups, such 

as carboxyl (-COOH) and hydroxyl (-OH) groups, as well as mineral constituents embedded 

within the biochar structure. This exchange mechanism enables effective binding of copper 

ions onto the biochar, contributing significantly to its capacity for copper removal from` 

aqueous environments (46–49). When biochar is added to copper-contaminated water, copper 
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ions (Cu²⁺) are drawn to the negatively charged sites on the biochar surface through 

electrostatic attraction. As these copper ions attach to the biochar, the original positively 

charged ions—such as calcium, potassium, or magnesium—that were previously bound to 

these sites are released back into the solution, effectively exchanging places with the copper. 

This ion exchange process is not only swift but also reversible, making it an efficient and 

dynamic mechanism for the removal of copper from aqueous environments (46,48,49). 

Biochars enriched with higher levels of readily exchangeable cations—either originating from 

the source biomass or introduced through modification—offer an increased number of 

available sites for copper uptake. For instance, sludge biochar modified with hydroxyapatite 

provides an abundant supply of calcium ions (Ca²⁺), which significantly enhances copper 

adsorption capacity via cation exchange. This enrichment facilitates more efficient 

displacement of copper ions onto the biochar surface, thereby improving its performance in 

copper-contaminated aqueous systems (48). Activation techniques, such as steam treatment or 

doping with minerals like magnesium or iron, can increase the availability of exchangeable 

cations and enhance the negative charge on the biochar surface, thereby improving copper 

adsorption (47). Additionally, the porosity and surface area of biochar play a significant role in 

facilitating access of copper ions to these exchange sites. Biochars possessing well-developed 

pore structures enable more efficient ion exchange by providing greater accessibility for copper 

ions to interact with the functional sites (46,49). 

Ion exchange reaction is given by, 

             Biochar-M 2+ + Cu 2+ (aq)                Biochar-Cu 2+ + M 2+ (aq) 

Where M 2+ represents an exchangeable cation on the biochar surface, such as Ca²⁺, K⁺, or 

Mg²⁺. 

4.2 Surface Complexation 

Surface complexation serves as a vital mechanism through which biochar adsorbs copper ions 

from aqueous solutions, particularly at moderate to high copper concentrations. In this 

mechanism, various functional groups on the biochar surface—such as carboxyl (-COOH), 

hydroxyl (-OH), amine (-NH₂), imine (-NH), and phosphate groups—interact directly with 

copper ions to form stable, often covalent, inner-sphere complexes. This chemisorption process 

is notably stronger and more selective than simple electrostatic attraction, as it involves 
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electron sharing or transfer between the copper ions and these surface groups, resulting in 

robust and specific bonding (50–54). 

The adsorption mechanism initiates as copper ions in solution approach the biochar surface and 

interact with reactive functional groups present on it. For instance, carboxyl and hydroxyl 

groups are capable of donating electron pairs to copper ions, leading to the formation of 

coordinate (or dative) bonds. Similarly, biochars that have been chemically modified to contain 

amino or imine groups exhibit enhanced copper binding due to the strong affinity of nitrogen-

containing groups for copper ions (50,53,54). This enhanced interaction has been confirmed 

through analytical techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier 

transform infrared spectroscopy (FTIR). Furthermore, phosphate and other phosphorus-

containing functional groups introduced via chemical modifications also play a significant role 

in complex formation, thereby further increasing the copper adsorption capacity of biochar 

(51,54). The evidence for these complexation interactions is typically observed as shifts in 

characteristic peaks corresponding to these functional groups in FTIR spectra, along with 

detectable changes in the copper's chemical state in XPS measurements following adsorption. 

Surface complexation reaction is given by, 

               Biochar-COO - + Cu 2+ (aq)                Biochar-COO-Cu +  

Where COO – is a carboxylate group, similar reactions occur with –OH, –NH₂, and phosphate 

groups. 

4.3 Electrostatic Attraction 

Electrostatic attraction is a key mechanism driving the adsorption of copper ions (Cu²⁺) onto 

biochar, particularly when the solution pH exceeds the biochar’s point of zero charge, causing 

the surface to carry an overall negative charge. Under these conditions, the positively charged 

copper ions in the solution are naturally drawn to and retained by the negatively charged sites 

on the biochar surface. These sites are commonly formed by oxygen-containing functional 

groups such as carboxyl (-COOH) and hydroxyl (-OH) groups (55–58). The density and 

availability of these negatively charged functional groups can be increased through chemical 

modification or by incorporating additional components like chitosan or iron oxide particles. 

Such enhancements boost the surface’s negative charge, thereby strengthening its attraction 

and affinity toward copper ions in the aqueous environment (58,59). The adsorption process 

begins as copper ions in the aqueous solution are attracted to the negatively charged surface of 
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biochar, forming an outer-sphere association. This interaction does not involve direct chemical 

bonding but is driven primarily by electrostatic forces. Electrostatic attraction plays a vital role 

at lower copper concentrations and during the initial phase of adsorption, as it helps to 

concentrate copper ions near the biochar surface, thereby enhancing their availability for 

subsequent mechanisms such as ion exchange or surface complexation (55,58). The 

effectiveness of this electrostatic interaction can be further enhanced by increasing the overall 

negative charge density on the biochar surface, which can be achieved by introducing 

additional functional groups or by adjusting the solution pH to optimize the surface charge 

(60,61). 

For example, research has demonstrated that biochar materials—especially those enhanced 

with amino (-NH₂) or hydroxyl (-OH) groups, or those coated with iron or magnesium oxides—

show improved ability to capture copper ions from water (58,61). This improved copper uptake 

is largely due to stronger attractions between the charged copper ions and the modified surfaces 

of the biochar. Additionally, the presence of other charged particles in the water can affect how 

well copper is removed: if there are many competing positively charged ions, they might block 

or compete for the same adsorption sites, reducing the efficiency of copper capture (55,56). 

Overall, electrostatic attraction—where opposite charges pull each other together—allows for 

quick and reversible removal of copper ions. This process works alongside other methods like 

swapping ions or forming surface bonds and becomes particularly effective when biochar is 

specifically designed to have more surface charge and a higher density of functional groups 

that can interact with copper (55–60,62). 

Electrostatic attraction reaction is given by, 

Cu 2+(aq) + Biochar-(negatively charged site)        [Biochar-Cu 2+] (adsorbed by 

electrostatic attraction. 

This process relies on the physical attraction between the copper ion and the negatively charged 

surface, without the formation of a direct chemical bond. 

4.4 Precipitation Reactions 

Precipitation reactions represent one of the most commonly used and highly efficient strategies 

for removing copper from contaminated water, particularly under alkaline conditions or when 

specific chemical groups or additives are present. In these methods, dissolved copper ions 

interact with added substances such as alkaline agents (like lime or sodium hydroxide), 
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carbonate salts (such as sodium carbonate or calcium carbonate), or sulfur-based reagents (e.g., 

sodium sulfide). Through these reactions, the copper ions are transformed into solid forms—

such as copper hydroxide, copper carbonate, or copper sulfide—that are much less soluble in 

water (57,59,62). Once formed, these solid copper compounds separate out of the water as 

particles, often referred to as sludge, which can then be physically removed. Advanced 

approaches may facilitate the recovery of copper by generating magnetic particles that can be 

extracted more easily. The effectiveness of this removal process is highly sensitive to the 

water’s pH; for example, copper hydroxide is most efficiently formed and removed when the 

pH is maintained between 8 and 10, where removal rates often exceed 90%—a result that meets 

or surpasses most regulatory standards for industrial wastewater discharge (59,62). 

Once the solid copper compounds form, they can be separated from the treated water using 

methods such as settling, filtration, or—in cases where magnetic properties are imparted—by 

magnetic extraction. The specific removal technique depends on the design and requirements 

of the treatment system. The type of chemical reagent chosen for precipitation, as well as the 

process conditions, plays a significant role in determining both the amount and the physical 

characteristics of the resulting sludge (57,59,62). For instance, using sodium carbonate (soda 

ash) often generates settled solids that are bulkier and easier to handle than those produced with 

some other chemicals. Precipitation-based treatment not only efficiently extracts copper from 

wastewater, but it also offers the possibility of recovering the copper for reuse, which supports 

resource conservation and environmental sustainability. As such, these processes are 

increasingly recognized as practical and responsible solutions for managing industrial effluents 

containing copper (57,59,62). 

Precipitation reaction is given by, 

Cu 2+ (aq) + 2OH -              Cu(OH) 2 

Similarly, Sulphide and carbonate ions react with copper ions to form copper sulphide and 

copper carbonate precipitate. 
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5. The factors affecting adsorption 

5.1 The most important Factors Affecting Adsorption 

The adsorption capacity in aqueous systems is influenced by several key factors. Solution pH 

significantly affects adsorption by altering the charge and solubility of both the adsorbent and 

adsorbate; depending on the specific system, metal adsorption may increase or decrease with 

pH (63–66). Higher initial concentrations of pollutants generally enhance adsorption capacity, 

as more molecules are available to interact with the adsorbent surface (63–65). Contact time 

also plays a crucial role, with adsorption typically occurring in phases—initial rapid uptake 

followed by a slower process until equilibrium is reached—depending on the system and 

adsorbent characteristics (67,68). Temperature can influence adsorption as well; in some 

systems, increased temperature improves adsorption capacity by enhancing molecular mobility 

and potentially causing structural changes in the adsorbent (63,64,69). While increasing the 

dosage of adsorbent like biochar often raises the total contaminant removal, it may lead to a 

decrease in adsorption capacity per unit mass due to site saturation (70). Lastly, surface 

modification techniques—such as chemical or thermal treatments—can enhance the surface 

area, porosity, and functional groups of adsorbents, thereby improving their adsorption 

efficiency and selectivity (66,70,71). 

5.2 The Additional Factors Influencing Adsorption 

Adsorption in aqueous systems is further influenced by factors such as ionic strength, particle 

characteristics, and surface chemistry. The presence and concentration of other ions in the 

solution can alter electrostatic interactions or compete for active sites, thereby affecting the 

overall adsorption (63–65,68). Smaller particle sizes and larger surface areas generally enhance 

adsorption capacity due to the increased number of available active sites (64,67,69). 

Additionally, the surface chemistry of adsorbents plays a crucial role in the adsorption 

mechanism. Functional groups and surface charge, often modified through chemical 

treatments, facilitate processes such as ion exchange, hydrogen bonding, and van der Waals 

interactions (64,66,69). 

6. Adsorption isotherm, kinetics and thermodynamics 

To comprehend how pollutants interact with adsorbents in water treatment and environmental 

remediation, adsorption isotherms, kinetics and thermodynamics are crucial. The distribution 
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of molecules between liquid and solid phases is described by the Langmuir and Freundlich 

isotherms, and the rate of adsorption is modelled by pseudo-first and pseudo-second-order 

kinetics. Studies of thermodynamics shed light on the characteristics and viability of the 

adsorption process. 

 

6.1 Isotherm Models: Langmuir and Freundlich 

The Langmuir and Freundlich isotherms are widely used models to describe adsorption 

behaviour. The Langmuir isotherm typically represents monolayer adsorption on a 

homogeneous surface with a finite number of identical sites and is often the best fit for 

adsorption data, as indicated by high correlation coefficients (R² > 0.99). This model has shown 

superior applicability in cases such as methylene blue adsorption on activated hydrochar, 

glyphosate on resin, and malachite green on biochar (72–75). In contrast, the Freundlich 

isotherm describes adsorption on heterogeneous surfaces and is sometimes more suitable for 

complex or multicomponent systems. It has been effectively applied to scenarios such as the 

adsorption of antibiotics on chitosan-carbon nanotube beads and organochlorine insecticides 

on various adsorbents (76–78). 

 

6.2 Kinetic Models: Pseudo-First and Pseudo-Second Order 

Adsorption kinetics are commonly described using pseudo-first-order and pseudo-second-

order models. Pseudo-second-order kinetics often provides the best fit for experimental data 

involving dyes, glyphosate, and various other pollutants, indicating that chemisorption is likely 

the rate-limiting step (72–75). However, in certain cases—particularly for some antibiotics—

the pseudo-first-order model may offer a better fit, suggesting that physical adsorption 

mechanisms could play a more dominant role in those systems (77). 

 

6.3 Thermodynamic Studies 

Thermodynamic parameters such as ΔH°, ΔG°, and ΔS° are essential for understanding the 

nature of adsorption processes, indicating whether the adsorption is spontaneous, endothermic, 

or exothermic, and helping to identify the underlying mechanism. For example, glyphosate 

adsorption was found to be endothermic with a high activation energy, pointing toward a 

chemisorption mechanism (73,77). Adsorption can occur through either physical or chemical 

interactions, with the dominant mechanism depending on factors such as the nature of the 

adsorbent, the adsorbate, and the specific environmental conditions of the system (77). The 

adsorbent, adsorbate, and system complexity all influence the choice of isotherm and kinetic 
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model. The optimal model is found using non-linear fitting techniques and statistical 

characteristics (such as R²) (75,79). Understanding these models aids in designing efficient 

adsorption systems for water treatment and pollution control (74,77,79). 

 

7. Comparison of different biochar sources: agricultural (agri) biochars 

vs. woody biochars 

The capacity of biochar, which is made from a variety of woody and agricultural sources, to 

adsorb copper from water has been extensively researched. The removal efficiency (%) and 

adsorption capacity (mg/g) are commonly used metrics to assess the performance of various 

biochars. When tailored for pyrolysis conditions, agricultural biochars often exhibit greater 

copper adsorption capacities and removal efficiencies than woody biochars.  

 

7.1 Adsorption Capacity (mg/g) 

Depending on the feedstock and pyrolysis temperature, agricultural biochars (such as maize 

straw, potato stems, pineapple leaves, and sugarcane bagasse) frequently have greater 

maximum adsorption capabilities for copper, ranging from roughly 12.5 mg/g to 60.7 mg/g 

(80–83).The adsorption capabilities of woody biochars, such as sawdust, hardwood, and 

softwood, are generally lower; values of 6.8 mg/g for hardwood and 1.5–4.4 mg/g for softwood 

and hardwood biochars have been observed (80,84,85), as shown in table 3. Even higher 

capacities, up to 371.5 mg/g, can be achieved by modified or magnetically enhanced biochars 

(often derived from agricultural sources), however these are not directly comparable to 

unmodified woody or agricultural biochar (83,86). 

 

Table 3: Different biochar sources and their adsorption capacity 

Biochar Source Adsorption Capacity (mg/g) Reference 

Corn straw (agri) 12.5 (80) 

Potato stem (agri) 61.8 (81) 

Pineapple leaf (agri) 60.7 (82) 

Hardwood (woody) 6.8 (80) 

Softwood (woody) 1.5 (84) 

Jarrah (woody) 4.4 (84) 
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7.2 Removal Efficiency (%) 

Agricultural biochars have demonstrated high adsorption performance, with removal 

efficiencies exceeding 60%, and certain optimized materials achieving up to 87% even after 

multiple use cycles (81,82). In contrast, woody biochars generally show lower removal 

efficiencies under similar conditions, often falling below 50% (84,85). 

Both agricultural and woody biochars benefit from higher pyrolysis temperatures (500–600°C) 

in terms of surface area and adsorption efficiency; however, under comparable circumstances, 

agricultural sources continue to perform better than woody ones (80–82,84,87). For copper 

adsorption, surface functional groups and porosity are essential, and agricultural biochars 

frequently have better qualities (81,82,87). In terms of both adsorption capacity and removal 

efficiency, agricultural biochars routinely exceed woody biochars in copper adsorption from 

water, particularly when generated at higher pyrolysis temperatures. They are therefore a viable 

and affordable choice for applications involving water cleanup. 

8. Regeneration and reusability 

The capacity of biochar, a carbon-rich substance made from biomass, to adsorb copper ions 

from water is being investigated more and more. Whether biochar can be efficiently 

regenerated and reused while retaining good performance across several adsorption-desorption 

cycles is a crucial factor for practical application, which are shown in figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5:  Types of regeneration of Biochar  

Desorption methods play a crucial role in the regeneration and reuse of copper-laden biochar, 

with NaOH and HCl being commonly used agents due to their effectiveness in releasing 

adsorbed copper ions, thereby enabling future reuse of the adsorbent (88). Optimized biochars, 

such as those derived from pineapple leaves, demonstrated sustained performance by 

maintaining a high copper removal efficiency of 87% even after five consecutive adsorption-

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 25 ISSUE 9 2025

PAGE NO: 29



desorption cycles using pressure cooker regeneration (10). Similarly, magnetic-

biochar/alginate beads exhibited strong reusability across multiple cycles, with minimal loss in 

adsorption capacity following desorption with HCl or NaOH (88). 

 

       Table 4: Regeneration methods of biochar 

Biochar 

Type/Modification 

Max Cu(II) 

Adsorption 

(mg/g) 

Reusability/Regeneration 

Method 

Performance  

After Cycles 

Reference 

Pineapple leaf 

biochar (PLB) 

60.7 Pressure cooker 

regeneration 

87% efficiency 

after 5 cycles  

(89) 

Magnetic-

biochar/alginate bead 

234.1 NaOH or HCl desorption Reusable over 

several cycles  

(88) 

 

8.1 Factors Affecting Reusability 

Biochars adsorption and reusability performance can be significantly enhanced by optimizing 

its source and modification processes, particularly by increasing surface area, pore volume, and 

the content of functional groups such as amino or oxygen-containing groups (88–90). 

Additionally, the efficiency of copper desorption and the retention of adsorption capacity over 

successive cycles are influenced by the choice of desorption agent and technique, further 

emphasizing the importance of tailored regeneration strategies for sustained biochar 

performance (88,89). A right regeneration method, like pressure cooker treatment or chemical 

desorption, biochar can sustain high adsorption effectiveness for several cycles. 

9. Comparison with other adsorbents 

Different adsorbents can be seen in figure 6, adsorption capacities of up to 265 mg/g can be 

achieved by optimised or modified biochars (such as those with ammonium phosphate or 

hierarchical pore structures), surpassing the majority of clay and zeolites (91–97). Standard 

adsorbents like activated carbon have been shown to outperform biochar in certain 

investigations, but often has fewer functional groups (93,96,98). In general, zeolite is less 

effective than the best-performing biochars, but it exhibits good adsorption and capacities 

comparable to some biochar’s (97,98). Although clay and other natural materials are less 

expensive than charcoal and zeolite, they have lesser adsorption capabilities (98), as seen in 

table 5. 
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Figure 6: Types of adsorbents used for copper adsorption 

  

Table 5: Adsorption performance comparison table 

Adsorbents Typical Cu(II) 

Adsorption Capacity  

(mg/g) 

Key Findings Reference 

Activated Carbon 4-898 Good performance, but less 

functional groups than biochar. 

(93,96) 

Zeolite 163 Effective, but slightly less than 

high-performing biochar 

(97,98) 

Clay Lower than 

Biochar/Zeolite 

Used for Cu(II) removal, but 

generally lower capacity 

(98) 

Biochar 35-265 High Capacity, especially when 

optimized or modified; rapid 

kinetics 

(8,91,92,94–97) 

 

9.1 Economic and Sustainability Considerations 

Biochar is inexpensive, sustainable, and widely accessible because it is made from waste 

biomass. By using industrial or agricultural byproducts in its manufacture, waste and 

environmental effect can be decreased (8,92,93,98,99). The production of activated carbon is 

more costly and frequently involves energy-intensive procedures and non-renewable 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 25 ISSUE 9 2025

PAGE NO: 31



precursors, despite its effectiveness (93,96). Although zeolite and clay are cheap and plentiful 

by nature, they may need to be modified to work better, which raises the price (97,98). 

 

10.  Limitations and challenges using biochar 

Depending on the type of feedstock, pyrolysis temperature, and modification techniques, 

biochar's characteristics can vary substantially, resulting in varying adsorption capacities and 

performance between studies and batches (100–104). For instance, a broad variety of copper 

adsorption capabilities (from 4–223 mg/g) are demonstrated by biochar derived from various 

sources (hardwood, corn straw, seaweed, municipal trash, and pine residue) and at various 

pyrolysis temperatures (100–102,104). Performance can be enhanced by modifications (such 

as chemical, magnetic, or mineral additives), but they also increase complexity and variability 

(104–107). It is challenging to compare findings or create general suggestions because 

experimental parameters including pH, initial copper content, contact time, and temperature 

vary greatly between investigations (100–102,105). Copper adsorption can be greatly impacted 

by the presence of competing ions or mixed waste streams, however these variables are not 

always assessed (100,108). Most studies are conducted at laboratory scale using batch systems, 

which may not reflect real wastewater conditions or continuous flow systems (103,104). 

Although biochar exhibits promise in the removal of copper from water, issues with scale-up, 

uneven material characteristics, and a lack of standardised testing must be resolved before it 

can be effectively applied in actual water. 

11.  Future perspectives of biochar 

Enhancing adsorption efficiency, selectivity, and practical use at bigger sizes are the main goals 

of future views. Copper adsorption capability and selectivity are greatly increased when 

magnetic nanoparticles or functional groups (such as amino groups) are added to biochar. 

Because of their high adsorption capabilities (up to 234.1 mg/g and 85.93 mg/g, respectively), 

ease of separation, and reusability, magnetic-biochar/alginate beads and activated magnetic 

biochars are appropriate for real-world water treatment applications (109,110). Adding 

functional groups to biochar (such as amino modification) can improve stability and selectivity 

at different pH levels and boost adsorption capacity by up to five times (111). To reach its full 

potential in environmental remediation, field-scale validation and commercialisation should be 

the top priorities of future research. 
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12.  Conclusion 

Biochar exhibits great promise as an efficient, reasonably priced, and ecologically benign 

adsorbent for the extraction of copper from aqueous solutions. Its adsorption capacity, 

selectivity, and stability are continuously improved by a variety of modifications, including 

activation, amino functionalisation, and metal doping. Some modified biochars have been 

shown to achieve copper adsorption capacities of over 150 mg/g and removal efficiencies of 

up to 100%. Cation exchange, surface complexation, and electrostatic interactions are the 

mechanisms that underlie copper adsorption, and pseudo-second-order kinetic models and 

Langmuir isotherms are frequently used to characterise the process. More comparison studies 

that explicitly assess the effectiveness of various biochar types and changes under standardised 

settings are obviously needed, notwithstanding these encouraging results. Furthermore, long-

term research is necessary to evaluate the biochar's resilience, regeneration, and practicality for 

copper remediation, particularly in intricate or mixed-contaminant systems. To completely 

realise and maximise the use of biochar for sustainable copper adsorption in environmental 

remediation, more research in these areas will be essential. 
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