DIVERSITY OF MOTHS IN KALABURAGI DISTRICT

Sneha Sarikar¹ Shwetha Sarikar² and Ramesh Londonkar³

¹Department of Post Graduate Studies and Research in Zoology, Gulbarga University, Kalaburagi – 585106, India

²Akka Mahadevi Mahila Maha Vidyalaya Women's Degree College, Bidar, India

³Research Guide, Department of Zoology, Gulbarga University, Kalaburagi – 585106, India

Abstract

The goal of the current study was to investigate the diversity of moths in the Kalaburagi district. The second-largest and most varied order is Lepidoptera. The initial work was completed between October 2024 and September 2025. A total number of 82 moth species representing 10 families were recorded. This study will provide insight into the variety of moths seen in the Kalaburagi district.

Keywords: Moths, Biodiversity, Diversity index

Introduction

Lepidoptera is the second-largest and most diverse order, then Coleoptera (Khan et al., 2023). The order Lepidoptera, referring to "scaled wing" in Greek, includes both moths and butterflies, making insects the most powerful and most varied class. Heterocera, or moths, are among the most varied insect groups (Shukla, and Tiwari 2024; Variragade 2024; Sindhu 2023). According to recent estimates, there are more than 1,65,000 moth species worldwide, with over 12,000 of them being recorded in India (Vaghela et al., 2023; Pradhan et al., 2024). The largest and most often used organisms in aquatic evaluation and monitoring globally are aquatic larvae (Sarikar and Vijaykumar 2022). Lepidoptera that are genuinely aquatic include butterflies and moths (Sarikar and Vijaykumar 2023). Moths are highly reactive to environmental disturbances. They can be utilised to monitor changes in a region's ecology and are good markers of environmental degradation (Ahmed et al., 2024). Ecosystems must strike an equilibrium between their sustainability and their surroundings, particularly when it comes to pollutants and human interference (Sarikar and Vijaykumar 2022). This study focuses on a checklist of moths in the Kalaburagi district.

Materials and Methods

Study area

The Indian state of Karnataka has the city of Kalaburagi. It serves as the district of Kalaburagi's administrative hub. It is located 623 kilometres north of Bangalore and was formerly a part of the Nizam's State of Hyderabad. A total size of 16.244 km², Kalaburagi district is situated in Northern Karnataka between latitudes 16° 11′ and 17° 19′ N and longitudes 76° 54′ E (Sarikar *et al.*, 2024). Three sampling locations are used in this investigation (Figure 1).

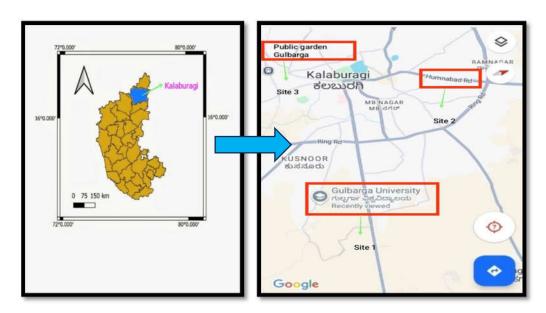


Fig.1 Map of Karnataka showing Kalaburagi District in Karnataka state

Methodology

The moth was trapped using the light trap method from 6:00 PM to 12:00 AM, and a Canon mirrorless camera was used to capture the moths. Identification was done taxonomy-wise by using taxonomic keys by (Holloway, 1984; Arora, 1990).

Diversity indices

1. Shannon-Wiener diversity index The Shannon index (H'), a gauge of species richness and abundance, was used to determine the variety of moth fauna. The following formula is used to determine the Shannon index:

$$H=-\sum pi ln pi$$

2. Simpson's diversity index

Simpson's Diversity Index (1/D) measures the probability that two randomly selected individuals from a sample will belong to the same species.

$$D = 1 - \frac{\sum n(n-1)}{N(N-1)}$$

3. The Margalef diversity index

The goal of the Margalef index is to take into consideration the tendency for species richness to rise when more individuals are sampled.

$$D = (S - 1) / ln(N)$$

Result and Discussion

The present study was carried out on the diversity of the moth population in the Kalaburagi district from October 2024 to September 2025. Insect sampling was done by using light-trap method. The current study reveals a total of 8035 individuals were found in which comprised of 10 Families, and 82 different species. Erebidae was most abundant family represented by 44 moth species followed by Sphingidae, Crambidae, and Geometridae contain 8, 12, and 9 with moderately recorded moth species and followed by Noctuidae, Eupterotidae, Uraniidae contain 2 moth species followed by Lasiocampidae, and Saturniidae contain 1 moth species, with the least number of moth species. Farooqui *et al.* 2020, who recorded the Erebidae family, represent the most extensive group of macro moths, with a total of 24569 species of moth belonging to 1760 genera in Uttar Pradesh. Simpson's reciprocal index value was 3.078, and Shannon-Weiner index value was 1.518, Margalef index was 2.048, hence, the values are found to be greater than 1, indicating good diversity of moth insect fauna in Kalaburagi district.

Table No. 1: Showing the list of moths of Kalaburagi district

Family	Species name	Common name
Erebidae	Amata passalis	Sandalwood defoliator
	Argina astrea	Pod borer
	Cyana peregrina	Red masked moth
	Spirma Helicina	Common owlet moth
	Digama hearseyana	Karonda moth

Creatonos interrupta	Baphomet moth
4.1	
Achea janata	Castor semilooper moth
Bastilla torrida	Jigsaw
Hypena sp	Snout moth
Cyclopis caecutiens	Fruit- piercing moth
Pyrraharetia Isabella	Tiger moth
Spirma retorta	Indian owlet-moth
Erebus hieroglyphica	White-barred owl moth
Erebus macrops	Common moth
Ataborviza divisa	Yellow stout oth
Olene mendosa	Brown tussock moth
Artaxa sp	Tussock moth
Aloa lactinea	Red costate tiger moth
Lymantria incerta	Spongy moth
Eudocima homoena	Fruit-piercing moth
Eudocima materna	Dot-underwing moth
Eudocima phanolia	Fruit-piercing moth
Euproctis cf lunata	Castor hairy moth
Ascota caricae	Tropical tiger moth
Ascota ficus	Fig leaf moth
Ascota sericea	Tropical tiger moth
Artena dortata	White-underwing moth
Dichromia sagitta	Dumvel
Olepa ricini	Castor silk moth
Chalio mygdon	Triangular-Striped moth
Mocis frugalis	Sugarcane looper
Erechia cyllaria	Cramer's moth
Aemene sp	Lichen tiger moth
Nepita conferta	Footman moth
Orvasca subnotata	Tussock moth
Thyas coronata	Yellow underwing
Pamdesma robusta	Robust Tabby moth

	Pericyma umbrina	Poinciana looper moth
	Amata cyssea	Handmaiden moth
	Plecoptera sp	Folded-wing moth
	Eressa confinis	Wasp moth
	Magina argus	Crotalaria pod borer
	Orgyia postica	Cocoa tussock moth
	Anticarsia irrorata	Velvet bean moth
Crambidae	Maruca vitarta	Bean pod porer
	Spoladae recurvalis	Beet webworm moth
	Poliobotys ablactalis	Pearl grey moth
	Chabula acamassalis	Brown and white spotted moth
	Diaphania indica	Cucumber moth
	Pyrausta sp	Mint moth
	Scirpophaga incertulas	Yellow stem borer
	Rehimena phrynealis	Yellow-margined moth
	Glyphodes bivitalis	Leafroller moth
	Parotis marginata	Emerald moth
	Rivula sericealis	Straw dot
	Cnaphalocrocis medinalis	Rice leaf roller
Geometridae	Chiasma nora	White-striped moth
	Scopula sp	Wave moth
	Chiasmia emersaria	Geomatrid moth
	Thalassodes quadraria	Geometer moth
	Traminda mundisima	Emerald moth
	Scopula pulchellata	Geometer moth
	Biston suppressaria	Tea lopper
	Nemoria sp	Emerald moth
	Hypomecis sp	Pale oak moth
Sphinigidae	Daphis nerii	Oleander moth
	Acherontia styx	Lesser death's head hawkmoth
	Thetra nessus	Yam hawkmoth
	Agrius convolvuli	Hornworm moth

	Clanis sp	Velvet hawkmoth
	Psilogramma increta	Plain grey hawkmoth
	Macroglossum sp	Hummingbird hawk-moth
	Hippotion celerio	Vine hawk- moth
Eupterotidae	Eupterote undata	Monkey moth
	Eupterote testacea	Monkey moth
Saturniidae	Anthrea mylita	Tasar silkworm moth
Uraniidae	Phazaca theclata	Cotton leaf roller
	Micronia aculeata	Grey swallowtail moth
Noctuidae	Aegocera venulia	Orange yellow moth
	Spodoptera litura	Cutworm moth
Lasiocampidae	Streblote siva	Jujube moth
Cossidae	Zeuzera sp	Leopard moth

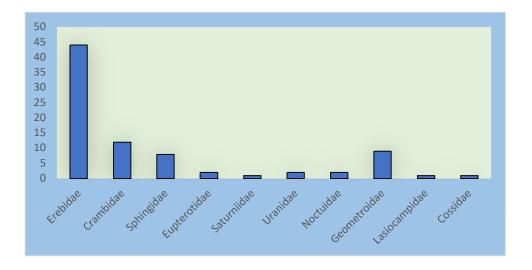


Figure 2. Family-wise distribution of moth species

Table 2. Showing the diversity indices of moth species in the Kalaburagi district

Number of individuals	8035
Simpson index	0.3249
Reciprocal Simpson index	3.078
Shannon-Weiner index	1.518
Marglef richness index	2.042

Conclusion

This preliminary study suggests that moth diversity is high in the Kalaburagi district. Moths an important stabiliser to the environment, either as pollinators or as prey to predators, hence we need to focus on their conservation and restoration. Further study aims to investigate the effect and seasonal variation of moths to understand the seasonal abundance of moths.

Reference

- Ahmed, G., Das, A. N., Borah, L., & Ahmed, R., 2024. Moth Diversity in the Mahamaya Reserve Forest, Kokrajhar, Assam. Indian Journal of Entomology. 1-5. http://dx.doi.org/10.55446/IJE.2024.1337.
- Arora G S. Collection and preservation of animals (Lepidoptera). Zool. Surv.Ind., Calcutta. 1990; 131-138.
- Farooqui, S. A., Parwez, H. & Joshi, R. 2020. A preliminary study and new distributional records of family Erebidae (Leach, [1815]) (Lepidoptera: Noctuoidea) from Aligarh, Uttar Pradesh, India. *Notulae Scientia Biologicae*, *12*(4), 794-806. https://doi.org/10.15835/nsb12410830
- Holloway, J D. Moths as Indicator organisms for categorizing rain-forest and monitoring changes and regeneration; 1984.
- Khan, A. U., Poly, N. Y., Dutta, S., & Alam, F. 2023. Lepidopteran insects status and diversity: A review. *Journal of Multidisciplinary Applied Natural Science*, *3*(1), 55-80. https://doi.org/10.47352/jmans.2774-3047.140
- Pattanaik, N. Satapathy, A., & Priyadarshini, D. 2021. Moth (Lepidoptera: Heterocera) diversity of Bhubaneswar, Odisha, India: a preliminary study. *Notulae Scientia Biologicae*, *13*(3), 10934-10934. https://doi.org/10.15835/nsb13310934

- Pradhan, I. Sethi, J. Rout, S. & Kumar, S. 2024. Common moths and their ecological importance in Bisra Range, Rourkela Forest Division, Odisha, India. *Asian J Biol*, 20(1), 1-6.
- Sarikar, S. & Vijaykumar, K. 2022. Assessment of water quality index and non-carcinogenic risk for ingestion of nitrate for drinking purpose of Bhosga Reservoir, Karnataka, India. *Curr World Environ*, 17(2), 467-479. http://dx.doi.org/10.12944/CWE.17.2.18
- Sarikar, S., & Vijaykumar, K. 2022. Monitoring of water quality using aquatic insects as biological indicators in Bhosga reservoir, Karnataka, India. *Advances in Zoology and Botany*, 10(4), 82-92. http://dx.doi.org/10.13189/azb.2022.100402
- Sarikar, S. & Vijaykumar, K. 2023. Yashoda taxonomic orders societial significance and treat of aquatic insects. *Indian Journal of Natural Sciences*, 14 (78), 55788-55796.
- Sarikar, S., Wankhede, S., & Sarikar, S. 2024. A comparative study on water quality and microbial conditions of open well and bore well water from a selected area of Kalaburagi city, Karnataka, India. *The holistic approach to environment*, *14*(4), 136-144. http://dx.doi.org/10.33765/thate.14.4.3
- Shukla, A., & Tiwari, S. 2024. A hasty survey on diversity of moths (Lepidoptera: Heterocera) from Bargi region of Jabalpur (M.P). *Journal of Entomology and Zoology Studies*. 12(1), 1-4.
- Sidhu.A.K. 2023. Lepidoptera of India: A Review. *Journal of Entomology and Zoology Studies*. 11(2), 105-114.
- Vaghela, S., Shah, K., & Gohil, B. 2023. Diversity and distribution of moths (Lepidoptera: Heterocera), Department of Life Sciences, MK Bhavanagar University, Bhavanagar, Gujarat, India. *Journal of Entomology and Zoology Studies*. 8(1), 79-87.
- Variragade, S. P. 2024. Butterfly diversity in different forest area of India. International Journal of Creative Research Thoughts 12 (2), 784 792.