$\alpha\beta$ and s β -closed functions in Topology *

Sajjanshettar Girish

Abstract

Aim of this paper is to study the properties of $s\beta$ - regular spaces and $s\beta$ - closed functions, using β -open (semipreopen sets) sets and semiclosed sets.

1 Introduction

In the literature semiopen sets plays an vital in general topology, due to Normal Levine [11]. In 1965, O. Njastad [21] introduced the concept of α - sets and properties of α - open sets was introduced by A.S. Mashhour et al. [15] the paper contains the notions of α - continuous functions, α - open functions and α - closed functions. In 1983, the concepts of β - open sets, β - closed sets, β - continuous functions, β - open functions and β - closed functions were introduced and studied by M.E.Abd El-Monsef et al. [1]. D.Andrijevic [4] introduced semipreopen sets and semipreclosed sets respectively and obtained their properties. Later in 1995 Park et al [23] introduced sp-regular spaces. In this paper we define and study the properties of $\alpha\beta$ - closed functions, β - regular spaces, composition mappings and results on space preservation.

2 Preliminaries

Throughout the paper (X, τ) , (Y, σ) and (Z, γ) (or simply, X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of X, then Cl(A) and Int(A) denote the closure and the interior of A respectively.

^{*2020} Math. Subject Classification — Primary: 54A05 ; 54C08 ; 54C10. Key words and phrases — $\alpha \beta$ closed functions ; $s\beta$ closed functions ; $s\beta$ - regular spaces; $\alpha\beta$ - regular spaces

Definition 1 A subset A of X is said to be

- (i) semiopen/11/ if $A \subset ClInt(A)$
- (ii) α -open[21] if $A \subset IntCl(Int(A))$
- (iii) semipreopen[4] if $A \subset Cl(IntCl(A))$
- (iv) $g\beta$ closed (= gsp-closed) [9] if $\beta Cl(A) \subset U$ whenever $A \subset U$ and U is open in X

The complement of a semiopen (resp. α -open, semipreopen (α -open)) set of X is called a semiclosed (resp. α -closed, semipreclosed (α -closed) set in X and the complement of a g β -closed set is called g β -open set in X. The family of all semiopen (resp. α -open, β -open) sets of X is denoted by SO(X)(resp. α O(X), β O(X)) and that of semiclosed (resp. α -closed, β -closed) sets of X is denoted by SF(X) (resp. α F(X)), β F(X)).

Definition 2 [5, 4, 2] Let A be a subset of a space X, then

- (i) The intersection of all semi-closed sets containing A is called semi-closure of A and is denoted by sCl (A)
- (ii) The intersection of all semipreclosed sets containing A is called semipre-closure of A or β -closure of A and is denoted by spCl(A) or $\beta Cl(A)$

DEFINITION 3 [5, 4, 2] Let A be a subset of a space X, then

- (i) The semi interior of A is defined by the union of all semieopen sets contained in A and is denoted by sInt(A).
- (ii) The semipre interior of A is defined by the union of all semipreopen sets contained in A and is denoted by spInt(A)

Definition 4 A function $f: X \to Y$ is called

- (i) semicontinuous [11] if $f^{-1}(V)$ is semiopen in X for every open set V of Y
- (ii) semiprecontinuous [16] if $f^{-1}(V)$ is semiopen in X for every open set V of Y
- (iii) irresolute [6] if $f^{-1}(V)$ is semiopen in X for every semiopen set V of Y.
- (iv) β -irresolute [13] if $f^{-1}(V)$ is β -open in X for every β -open set V of Y.
- (v) α -irresolute [12] if $f^{-1}(V)$ is α -open in X for every α -open set V of Y.
- (vi) β -continuous [1] if $f^{-1}(V)$ is β -open in X for every open set V of Y

Definition 5 A function $f: X \to Y$ is called

- (i) semiclosed [22] if f(F) is semiclosed set in Y for each closed set F of X.
- (ii) presemiclosed [10] if f(F) is semiclosed set in Y for each semiclosed set F of X.
- (iii) pre α -open [7] if f(U) is α open set in Y for each α -open set U of X.
- (iv) pre α -closed [7] if f(U) is α -closed set in Y for each α -closed set U of X.
- (v) pre β -open [13] if f(U) is β open set in Y for each β -open set U of X.
- (vi) pre β -closed [13] if f(U) is β -closed set in Y for each β -closed set U of X.
- (vii) presemiopen [6] if f(U) is semiopen set in Y for each semiopen set U of X.
- (viii) β -closed [1] if f(F) is β -closed set in Y for each closed set F of X.
- (ix) α -closed [15] if f(F) is α -closed set in Y for each closed set F of X.
- (x) $\alpha g\beta$ closed [20] if f(F) is $g\beta$ closed set in Y for each α -closed set F of X.

Definition 6 A topological space (X, τ) is said to be

- (i) β regular [3] provided that every closed set F and a point x not in F, can be separated by disjoint β open sets.
- (ii) semiregular [8] provided that every semiclosed set F and a point x not in F, can be separated by disjoint semiopen sets.
- (iii) $\alpha\beta$ -regular [18] provided that every α closed set F and a point x not in F, can be separated by disjoint β -open sets.
- (iv) β normal [13] provided that every pair of non-empty disjoint closed sets can be separated by disjoint β open sets.
- (v) $\alpha\beta$ normal [18] provided that every pair of non-empty disjoint α -closed sets can be separated by disjoint β open sets.
- (vi) α T_1 -space [14] if for any distinct pair of points x and y in X, there is an α -open set U in X containing x but not y and an open set V in X containing y but not x resp., with $U \cap V \neq \emptyset$.

3 $\alpha\beta$ - closed functions

DEFINITION 7 A function $f: X \to Y$ is said to be $\alpha\beta$ -closed if the image of each α -closed set of X is β -closed in Y.

EXAMPLE 3.1 Let
$$X = \{a, b, c, d, e\}$$
, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $Y = \{1, 2, 3, 4, 5\}$, $\sigma = \{\emptyset, \{1\}, \{2, 3\}, \{1, 2, 3\}, Y\}$ Define $f : X \to Y$ by $f(a) = 1$, $f(b) = 2$, $f(c) = 3$, $f(d) = f(e) = 5$ clearly, f is $\alpha\beta$ -closed function.

THEOREM 3.2 A function $f: X \to Y$ is $\alpha\beta$ -closed if and only if any subset A of Y and any α -open set F containing $f^{-1}(A)$, there is a β -open set G of Y containing A such that $f^{-1}(G) \subset F$.

Proof. Necessity. Suppose $f: X \to Y$ is $\alpha\beta$ -closed function and $A \subset Y$ and F is α -open set of X containing $f^{-1}(A)$. Put G = Y - f(X - F). Then G is β -open set of Y, $A \subset G$ and $f^{-1}(G) \subset F$

Sufficiency. Let K be any α -closed set of X. Put B = Y - f(K) then $f^{-1}(A) \subset X \setminus K$ and X - K is α -open in X. There exists a β -open set G of Y such that $A = Y - f(K) \subset G$ and $f^{-1}(G) \subset X - K$

Therefore f(K) = Y - G and hence f(K) is β -closed in Y

Some results on $\alpha\beta$ - closed functions and allied mappings :

Theorem 3.3 If $f: X \to Y$ and $g: Y \to Z$ be two functions such that $gof: X \to Z$ is $\alpha\beta$ -closed function:

- (i) If f is α -irresolute surjection then g is $\alpha\beta$ -closed
- (ii) If g is β -irresolute injection then f is $\alpha\beta$ -closed

Proof. (i) Let U be an arbitrary α -closed set in Y. Since $g \circ f$ is $\alpha\beta$ -closed and f is α -irresolute and surjective then $g(U) = g \circ f(f^{-1}(U))$ is a β - closed set in Z. Hence, g is $\alpha\beta$ -closed.

(ii) Since g is injective, we remark that $f(A) = g^{-1}(g(f(A)))$ for every subset A of X. Let U be an arbitrary α -closed set in X, then by hypothesis $(g \circ f)(U)$ is a β - closed set in Z. Again $f(U) = g^{-1}(g \circ f)(U)$ is β - closed in Y. Since g is β -irresolute and injective. This shows f(U) is β - closed in Y. Hence, f is $\alpha\beta$ - closed

Theorem 3.4 : If
$$f: X \to Y$$
 is pre - α -closed and $g: Y \to Z$ is $\alpha\beta$ closed then $gof: X \to Z$ is $\alpha\beta$ -closed

Proof. Let U be an arbitrary α -closed set in X. Since f is pre- α -closed, f(U) is α -closed in Y. Again, since g is $\alpha\beta$ closed and f(U) is α -closed, $g(f(U)) = (g \circ f)(U)$ is β -closed in Z. This shows $g \circ f$ is $\alpha\beta$ -closed.

Definition 8 A function $f: X \to Y$ is said to be quasi- α - closed function if the image of each α -closed set of X is closed in Y.

Example 3.5 Let
$$X = \{a, b, c, d, e\}$$
, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $Y = \{1, 2, 3\}$, $\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, Y\}$. Define $f: X \to Y$ by $f(a) = 1$, $f(b) = f(c) = 2$, $f(d) = f(e) = 3$. Then f is quasi- α -closed function.

Theorem 3.6 : If $f: X \to Y$ is quasi - α - closed and $g: Y \to Z$ is β - closed then $gof: X \to Z$ is $\alpha\beta$ - closed

Proof. straight forward.

4 s β - closed functions

Definition 9 A function $f: X \to Y$ is said to be $s\beta$ - closed function if the image of each semiclosed set of X is β -closed in Y.

Example 4.1 Let
$$X = \{a, b, c, d, e\}$$
, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $Y = \{1, 2, 3, 4, 5\}$, $\sigma = \{\emptyset, \{1\}, \{2, 3\}, \{1, 2, 3\}, Y\}$ Define $f: X \to Y$ by $f(a) = 1$, $f(b) = f(c) = 2$, $f(d) = f(e) = 4$. clearly, f is s β -closed function.

THEOREM 4.2 A function $f: X \to Y$ is $s\beta$ -closed if and only if any subset A of Y and any α -open set F of X containing $f^{-1}(A)$, there is a β -open set G of Y containing A such that $f^{-1}(G) \subset F$.

Proof. Is similar to Theorem 3.2

Theorem 4.3 If $f: X \to Y$ and $g: Y \to Z$ be two functions such that $gof: X \to Z$ is $s\beta$ -closed function:

- (i) If f is irresolute surjection then g is $s\beta$ -closed
- (ii) If g is β -irresolute injection then f is $s\beta$ -closed

Proof. Is similar to Theorem 3.3

Theorem 4.4 : If $f: X \to Y$ is presemiclosed and $g: Y \to Z$ is $s\beta$ -closed then $gof: X \to Z$ is $s\beta$ -closed

Proof. straight forward.

Definition 10 A function $f: X \to Y$ is said to be quasi-semiclosed function if the image of each semiclosed set of X is closed in Y.

Example 4.5 Let
$$X = \{a, b, c, d, e\}$$
, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ and $Y = \{1, 2, 3\}$, $\sigma = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, Y\}$. Define $f : X \to Y$ by $f(a) = 1$, $f(b) = f(c) = 2$, $f(d) = f(e) = 4$. Then f is quasi-semiclosed function.

Theorem 4.6 : If $f: X \to Y$ is quasi - semiclosed and $g: Y \to Z$ is β - closed then $gof: X \to Z$ is $s\beta$ - closed

Proof. straight forward.

Remark 4.7: The functions defined above have following implications:

None of the implications in the above are reversible.

Example 4.8 Let
$$X = \{a, b, c\}$$
, $\tau = \{\emptyset, \{b\}, \{a, b\}, X\}$ and $Y = \{a, b, c, d\}$, $\sigma = \{\emptyset, \{a, b\}, \{a, b, c\}, Y\}$. Define $f: X \to Y$ by $f(a) = d$, $f(b) = b$, $f(c) = c$, Then f is pre- α -closed but not quasi-semiclosed.

Example 4.9 Let
$$X = \{a,b,c\}$$
, $\tau = \{\emptyset,\{b\},\{a,b\},\ X\}$ $Y = \{a,b,c,d\}$,
$$\sigma = \{\emptyset,\{a,b\},\{a,b,c\},\ Y\}.$$
 Define $f: X \to Y$ by $f(a) = d$, $f(b) = b$, $f(c) = d$, Then f is quasi-semiclosed and pre- β -closed

5 s β - regular spaces

DEFINITION 11 A topological space (X, τ) is said to be $s\beta$ - regular for each semiclosed set F and a point x in X - F, there exist disjoint β - open sets U and V such that $x \in U$ and $F \subset V$

Example 5.1 Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a, b\}, \{a, b, c\}, X\}$, the space (X, τ) is sbrighter out semiregular.

Remark 5.2: The following implications hold ingeneral:

$$s\beta$$
 - regular space $\implies \alpha\beta$ - regular \implies \implies semiregular space \implies β - regular space

None of the implications in the above are reversible.

Theorem 5.3 For the topological space (X the following statements are equivalent:

- (i) X is $s\beta$ -regular
- (ii) For each $x \in X$ and for each semiopen set U containing x there exists a β -open set V containing x such that $x \in V \subset \beta \operatorname{Cl}(V) \subset U$
- (iii) For each semiclosed set F of X, $\cap \{\beta \ Cl(V) \ / \ F \subset V \in \beta O(X) \} = F$
- (iv) For each nonempty subset A of X and each $U \in SO(X)$ if $A \cap U \mp \emptyset$ then there exists $V \in \beta$ O(X) such that $A \cap V \mp \emptyset$ and $\beta Cl(V) \subset U$
- (v) For each nonempty subset A of X and each $F \in SF(X)$ if $A \cap F = \emptyset$ then there exists disjoint β open sets V, W such that $A \cap V \neq \emptyset$ and $F \subset V$
- *Proof.* (i) \rightarrow (ii) : Let X is s β regular space. Let $x \in X$ and U be semiopen set containing x implies X U is semiclosed such that $x \notin X U$. Therefore by (i) there exists β open sets V and W such that $x \in V$ and $X U \subset W$ which implies $X W \subset U$. Since V and W disjoint $\beta Cl(V) \cap W = \emptyset$ results $\beta Cl(V) \subset X W \subset U$. Therefore $x \in V \subset \beta Cl(V) \subset U$.
- (ii) \rightarrow (iii): Let F be a semiclosed subset of X and $x \notin F$. then X F is semiopen set containing x. By (ii) there exists β -open set U such that $x \in U \subset \beta Cl(U) \subset X F$ implies $F \subset X \beta Cl(U) \subset X U$. which means $F \subset V \subset X U$ where $V = X \beta Cl(U) \in \beta O(X)$ and $x \notin V$ that implies $x \notin \beta Cl(V)$ $x \notin \cap \{\beta Cl(V) \mid F \subset V \in \beta O(X)\}$. Therefore $\cap \{\beta Cl(V) \mid F \subset V \in \beta O(X)\} = F$
- (iii) \to (iv): A be a subset of X and $U \in SO(X)$ such that $A \cap U \neq \emptyset$ there exist $x_0 \in X$ such that $x_0 \in A \cap U$ Therefore X U is semiclosed set not containing x_0 implies $x_0 \notin sCl(X U)$. By (iii) there exists $W \in \beta O(X)$ such that $X U \subset W$ results $x_0 \notin \beta Cl(W)$.

Put $V = X - \beta Cl(W)$, then V is β open set containing x_0 which implies $A \cap V \neq \emptyset$ and $\beta Cl(V) \subset \beta Cl(X - \beta Cl(W)) \subset \beta Cl(X - W)$. Therefore $\beta Cl(V) \subset \beta Cl(X - W) \subset U$.

- (iv) \rightarrow (v): Let A be a nonempty subset of X and F be semiclosed set such that $A \cap F = \emptyset$. Then X F is semiopen in X and $A \cap (X F) \neq \emptyset$ Therefore by (iv), there exist $V \in \beta O(X)$ such that $A \cap V \neq \emptyset$ and $\beta Cl(V) \subset X F$. Put $W = X \beta Cl(V)$ then $W \in \beta O(X)$ such that $F \subset W$ and $W \cap V = \emptyset$.
- $(v) \to (i)$: Let $x \in X$ be arbitrary and F be semiclosed set not containing x. Let A = X F be a nonempty semiopen set containing x then by (v) there exist disjoint β open sets V and W such that $F \subset W$ and $A \cap V \neq set$ implies $x \in V$. Thus X is β regular.

Some space preservation results in the following:

Theorem 5.4 If If $f: X \to Y$ is a pre - β -open , irresolute bijection and X is $s\beta$ -regular space , then Y is $s\beta$ -regular.

Proof.: Let F be any semiclosed subset of Y and $y \in Y$ with $y \notin F$. Since f is irresolute, $f^{-1}(F)$ is semiclosed set in X. Again, f is bijective, let f(x) = y, then $x \notin f^{-1}(F)$. Since X is $s\beta$ - regular, there exist disjoint β -open sets U and V such that $x \in U$ and $f^{-1}(F) \subset V$. Since f is, pre- β -open bijection, we have $y \in f(U)$ and $F \subset f(V)$ and $f(U) \cap f(V) = f(U \cap V) = \emptyset$ Hence, Y is $s\beta$ -regular.

Theorem 5.5 If If $f: X \to Y$ is pre-semiclosed, β -irresolute injection and Y is $s\beta$ -regular space, then X is $s\beta$ -regular.

Proof.: Let F be any semiclosed set of X and $x \notin F$. Since f is presemiclosed injection, f(F) is semiclosed set in Y and $f(x) \notin f(F)$. Since Y is $s\beta$ -regular space and so there exist disjoint β -open sets U and V in Y such that $f(x) \in U$ and $f(F) \subset V$. By hypothesis, $f^{-1}(U)$ and $f^{-1}(V)$ are β -open sets in X with $x \in f^{-1}(U)$, $F \subset f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Hence X is $s\beta$ -regular. X is $s\beta$ -regular

Theorem 5.6 Every α - T_1 and $\alpha\beta$ -normal space is $\alpha\beta$ -regular

Proof.: Let X be a α - T_1 -space and $\alpha\beta$ -normal space. Let F be any α -closed set in X and $x \in X - F$. As X is α - T_1 -space, $\{x\}$ is α -closed for all $x \in X$. Thus F and $\{x\}$ are two disjoint α -closed sets in X. Since X is $\alpha\beta$ -normal space, there exist disjoint β -open sets G and G are G and G and G are G and G and G are G are G and G are G are G and G are G and G are G are G are G are G are G are G and G are G are G and G are G are G are G are G are G and G are G and G are G are

Theorem 5.7 If $f: X \to Y$ is a α -irresolute, $\alpha g \beta$ -closed surjection and X is $\alpha \beta$ - normal then so is Y.

Proof. : Let A and B be any two disjoint α -closed sets in Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint α -closed sets of X. Since f is α -irresolute, $\alpha\beta$ - normal, there exist β - open sets U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By theorem [18], there exist $g\beta$ - open sets G and H of Y such that $A \subset G$ and $B \subset H$, $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Then $f^{-1}(G) \cap f^{-1}(H) = \emptyset$. Thus $G \cap H = \emptyset$. By theorem [18] Y is $\alpha\beta$ - normal.

References

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β -open sets and β -continuous mappings $Bull.Fac.Sci.Assiut\ Univ.,\ 12\ (1983),\ 77-90$
- [2] M.E.Abd El-Monsef, R.A.Mahmoud and E.R.Lashin, β -closure and β interior, Journal Fac. Ed. Ain Shams Univ., 10(1986), 235-245
- [3] M.E.Abd El-Monsef, A.N.Giaisa and R.A.Mahmoud , β -regular spaces ,Proc.Math.Phys. Soc. Egypt, no. 60(1985),47-52
- [4] D.Andrijevic , Semipreopen sets , Mat. Vesnik , 38, no. 1(1986) , 24-32.
- [5] S.G.Crossley and S.K.Hildebrand , Semiclosure , Texas J. Sci., 22, no.2-3 (1970), 99-112.
- [6] S.G.Crossley and S.K.Hildebrand , Semitopological properties ,*Fund. Math.*, 74,No.3 (1972), 233-254
- [7] R.Devi , K.Balachandran and H.Maki, Generalized α -closed maps and α -generalized closed maps , $Indian\ J.Pure\ Appl.Math.,\ 29(1)\ (Jan-1998),37-49$
- [8] C.Dorsett, Semi-regular spaces, Soochow J. Math., 8 (1982), 45-53

- [9] Julian. Dontchev, On generalized semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 16(1995), 35-48
- [10] G.L.Garg and D.Shivaraj , Presemiclosed mappings, *Periodica Math.Hungar.*, 19(2), (1988), 99-106
- [11] N. Levine, Semi open sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [12] S.N.Maheshwari and S.S.Thakur, On α -irresolute mappings, Tamkang J.Math., 11(1980), 209-214
- [13] R.A.Mahmoud and M.E.Abd El-Monsef , β -irresolute and β -topological invariant , $Proc.Pakistan\ Acad.\ Sci.,\ 27(3)(1990),\ 285296$
- [14] , H.Maki, R.Devi and K.Balachandran , Generalized α -closed sets in topology, Bull.Fukuoka Univ.Ed. Part III , 42(1993), 13-21.
- [15] A.S.Mashhour , I.A.Hasanein and S.N.El-Deeb , On α -continuous and α -open mapping , Acta Math. Hungar., 41(1983),213-218
- [16] G.B.Navalagi, Semiprecontinuous functions and properties of generalized semipre-closed sets in topological spaces , IJMMS , 29(2)(2002), 85-98
- [17] Govindappa Navalagi, α -neighbourhoods in topological spaces, Pacific-Asian J.Math., Vol.3(1-2) (2013), 177-186
- [18] Govindappa Navalagi, $\beta\alpha$ -regular spaces and $\beta\alpha$ -normal spaces in topology,IJIRSET, Vol.9, Issue~9~(Sep.2020),8934-8942
- [19] Govindappa Navalagi , β^* -normal spaces and some functions in topology, Amer. Journal of Math. Sci. and Applications , Vol.2(2), July-Dec. 2014, 93-96
- [20] Govindappa Navalagi, β^* -normal spaces and pre-g β -closed functions in topology, Amer. Journal of Math. Sci. and Applications, Vol.2(2), July-Dec. 2014, 1-4
- [21] O.Njastad, On some classes of Nearly open set, Pacific J.Math., 15 (1965), 961-970
- [22] T.Noiri , A generalization of closed mappings , Atti. Accad. Naz.Lincei. Rend .Cl.Sci. Fis. Mat.Natur., (8) 54(1973),412-415
- [23] J.H.Park and Y.B.Park, On sp-regular spaces, *J.Indian Acad. Math.*, 17 (2)(1995),212-218

Girish Sajjanshettar
Department of Mathematics
Manipal Institute of Technology (MAHE)
Manipal - 576104
Karnataka. INDIA.
Email: sajjangm@yahoo.com

11