ANALYSIS AND DESIGN OF 110KV/220KV MCMV KLB TYPE TRANSMISSION TOWER.

Anil E¹, M.Tech, Department of Civil Engineering, Ilahia College of Engineering and Technology, APJ Abdul Kalam Technological University.

Dr.Shaina Beegam N², Professor, Department of Civil Engineering, Ilahia College of Engineering and Technology, APJ Abdul Kalam Technological University

ABSTRACT

Transmission towers are critical components in the development of power transmission infrastructure, accounting for approximately 45% to 60% of the total construction cost of transmission lines. Therefore, optimizing tower design is essential for achieving cost efficiency while maintaining safety and reliability in accordance with CBIP Manual 323. This study focuses on the structural design and analysis of a transmission tower intended for the upgradation of an existing 110 kV double-circuit line to a multi-circuit 110 kV/220 kV configuration within the same Right of Way (ROW), addressing the growing energy demands of Kerala without requiring additional land-a key advantage in densely populated areas. Various tower base configurations-wide, narrow, and semi-narrow-were considered based on site-specific constraints. The design process accounted for all critical load components including self-weight, conductor and accessory weights, tension effects, and environmental influences, in compliance with IS 802 Part 1 (2015). A detailed structural model of the tower was developed using STAAD.Pro software, with preliminary member sections assigned and subjected to calculated loads under different design scenarios. The final tower configuration was derived based on structural safety and performance, and a general arrangement drawing was prepared. The proposed tower design enables Kerala State Electricity Board Ltd. (KSEBL) to enhance its transmission capacity from 140 MW to 740 MW per line segment, contributing toward the state's strategic goal of increasing overall transmission capacity from 6000 MW to 10,000 MW by 2030. This approach ensures cost-effective infrastructure development without the need for additional land acquisition, offering a scalable solution for future transmission upgrades in urban and constrained environments.

Key words: Multi-Circuit Tower, Right of Way (ROW), STAAD. Pro Analysis, Transmission, CBIP manual

INTRODUCTION

The rapid growth in electricity demand, driven by increased urbanization, industrialization, and the adoption of electric vehicles, has placed immense pressure on existing power transmission networks. In densely populated regions like Kerala, India, where acquiring additional land is both costly and challenging, there is a critical need for innovative solutions that enhance transmission capacity within existing Right of Way (ROW) constraints. One such solution is the upgradation of existing transmission lines using multi-circuit transmission towers capable of supporting higher voltage levels without expanding the physical footprint of the infrastructure. Transmission towers are among the most capital-intensive components of a power transmission line, contributing approximately 45% to 60% of the total project cost. Therefore, optimizing their structural design can lead to significant cost savings while

1

improving operational efficiency and reliability. At the same time, tower designs must comply with national standards such as IS 802 (Part 1):2015 and guidelines outlined in the CBIP Manual 323 to ensure structural safety under various loading conditions, including wind, seismic, and environmental loads.

This study investigates the manual and software-assisted modeling, analysis, and design of a 220 kV multi-circuit transmission tower intended for the upgradation of existing 110 kV lines. Using STAAD. Pro for simulation and design validation, the study explores different tower base configurations, structural member selections, and load conditions as per Indian standards. The resulting tower design supports a significant increase in transmission capacity—from 140 MW to 740 MW per line—without requiring additional land acquisition. This makes it a practical and sustainable solution for power utilities like the Kerala State Electricity Board Ltd. (KSEBL), which aims to increase the state's total transmission capacity to 10,000 MW by 2030.

OBJECTIVES

To understand the design standards and safety requirements applicable to transmission tower design.

To explore optimization techniques and determine the appropriate type of tower based on functional and structural considerations.

To analyze various loads acting on transmission towers, including imposed loads, wind loads on conductors and tower bodies, tension forces, and load combinations as per IS 802 (Part 1): 2015.

To study the selection of tower members using STAAD Pro software and evaluate the factor of safety for each member through structural analysis.

METHODOLOGY

LOAD ANALYSIS

The following calculations are required as per IS 802 before the load calculations.

1. Tower height calculation for 110kV/220kV MCMV KLB type transmission tower;

Ground Clearance (m)+ Max Sag of conductor (m) + Sag Error (m) (IS 802 part 1-2015) + Height of Max Extension (m)+ Vertical Separation of Conductor (m) for each phase R, Y, B+ Height of Top Conductor Attachment (m) + Height of EarthWire from Top Conductor (m) - (Ground Clearance - Min Sag Difference) + Height of EarthWire or Insulator Attachment

Reductions: -Min Sag at 10 deg, No Wind, 2/3rd of Min Sag

6.1m+7.63m+0.15+2x3.2m (110kV phase to phase clearance) +7.5m (inter circuit clearance 110kV nad 220kV)+2x5.5 (220kV phase to phase clearance) +7.8m (Height of earth wire from top 220kV circuit =55.58 m

Reduction 3.1m (min sag), 2/3x2.4=1.6m.

- Height of the tower =55.58-1.6 m =53.98m.
- **2.** Tower base width shall be fixed as per the client requirement based on the site constraints which is to be installed.

The 110kV/220kV MCMV KLB type transmission tower shall be proposed to semi narrow based type $10m \times 10m$ as the fixed base width.

3. Calculation of loads over the transmission tower as per IS 802 part 1-2015.

As per the code various load combinations Reliability requirement, security requirement, safety requirement, cascading requirement.

Reliability requirement.

The reliability of a transmission tower refers to its ability to consistently perform its intended function throughout its design life without structural failure. According to IS 802 (Part 1):2015, the reliability load cases must consider the prevailing climatic conditions, including everyday temperature and 100% wind intensity. Wind loads should be evaluated in oblique directions at angles of 0° , 30° , and 45° to account for the most critical load scenarios.

The following wind data are considered.

Basic wind speed for Zone 2 as per IS 802 part 1-2015 for Kerala =									
Risk coefficien	=	1.1							
Risk coefficie	nt k2 (IS 802 part 1-2015)	=	1						
Design wind p	ressure Pd (IS 802 part 1-2015)	=	59.56Kg/m2						
Wind pressure	on conductor	=	PdxCdcxGc						
Where: Pd=	Design wind pressure								
Cdc=	Drag coefficient								
Gc=	Gust response factor								
Wind pressure	on insulator	=	PdxCdixGc						

As per IS 802 part1-2015, The drag coefficient for tower is 1 and insulator is 1.2.

Gust response factor depend on the height of the conductor/insulator and available in the table IS 802part1-2015.

Reliability condition under 0° wind obligation is calculated and given below. Annexure 1.

Security Requirement.

Focuses on the ability of the tower to withstand extreme, rare, or unexpected events (e.g., natural disasters, sabotage) without catastrophic failure.

Withstanding extraordinary loads like cyclonic winds, earthquakes, or explosions. Preventing systemic failures in extreme scenarios.

The sample calculation is attached as per IS 802 part 1-2015 is attached Annexure-2.

Safety requirement

Pertains to the protection of people, property, and the environment from harm associated with the tower's operation or failure.

Safe clearance from the ground, buildings, and vegetation. Stability against collapse to avoid endangering life or infrastructure. Use of corrosion-resistant materials to prevent hazardous failures.

The sample calculation is attached as per IS 802 part 1-2015 is attached Annexure-3.

Cascading requirement.

Focuses on preventing a single failure in the tower or line from triggering a series of failures (cascading events) in the transmission network.

Incorporating redundancy in design to prevent chain failures. Ensuring system stability and controlled fault isolation. Avoiding systemic power outages due to localized issues The sample calculation is attached as per IS 802 part 1-2015 is attached Annexure-4.

Load tree and STAAD Pro

The load combinations were calculated as per the relevant standards, and separate load trees were prepared for each case. A STAAD Pro model was developed using tentative angle sections, and the calculated loads from the load trees were applied at the respective load points. The structure was analyzed under each load case in STAAD Pro. In the post-processing stage, the displacement of each node was verified against the allowable limits. If any displacement exceeded the permissible value, the corresponding angle section was revised to a higher size, and the analysis was repeated until all nodal displacements were within acceptable limits.

Once the structure satisfied the displacement criteria, the STAAD output was reviewed to examine the internal forces in each member. The capacity of each member was calculated, and the factor of safety (FOS) was checked. If the FOS exceeded the minimum required value, the section was optimized by replacing it with a lower configuration to ensure efficient use of material. Sample load trees and STAAD outputs are provided in the annexures.

The load tree are drawn from the result obtained through Staad pro and are given below

Displacement pattern after analysis.

Tower design after load calculation

Load 1 : Di

Annexure-1

Tower Descr	n			220/110kV MCM	V Type KLB	Tower with	+9M body Exter	nsion				
LOAD CALCULATIONS												
For Earthwire		GS W 7/3.15 HTGS		ITGS	For Conductor	CKT 1 Panther ACSI	CKT 2 ACSRPanthe	For Insulator	CKT 1	CKT 2		
Number Ne			1		Number Nc	1	2	Number Ni	1	2		
Diameter De (m)			0.00945		Diameter Dc (m)	0.021	0.021	Diameter Di (m)	0.255	0.255		
Weight We(kg/m)			0.428		Weight Wc (kg/m)	0.974	0.974	Weight Wi (kg)	50	50		
Tension Te (kg)			2506.74		Tension Tc (kg)	4414.23	4414.23	Length Li (m)	1.53	2.915		
	CI	CT 1	CK	T 2	Wind Pressure (kg/m^2)	CKT 1	CKT 2	Line	in e Deviation			
8 pan s	NC	BWC NC B		BWC	EarthWire Pe	165.82	165.82	Angle Min	¢1	0		
Normal Span Sn (m)		3	35		Conductor Pc	130.97	138.42 Angle Max		¢2	14		
Wind Span Swn (m)	752	201	335	201	Insulator Pi	156.74	175.96	Wind	Sin^2 Q1	0.9832		
MaxWtSpanSwt1(m)	1000	1000	1000	600	Angle of Wind	d Incidence (degre	ee)	Direction	Sin^2 Q2	0.9828		
Min Wt Span Sw2(m)	-1000	-576	-1000	-600	θ	()	Factors	Sin^2 Q3	1.000		
			Reli	abilit	ty Requirement	•		Norm	al Condition	n		
		Wind	Directi	on		()					
I	Every da	ay Tem	perature	e (32 d	egree)	100%	Wind	All h	ntact Wires			
For Earthwire								GS W 7/3.15 H	TGS			
Transverse Loads							(KT 1	CI	CT 2		
Wind Load on Earthwir	e				Ne*De*Swn*Pe*Sin^2 Ω			1179	525			
Load Due to Deviation					2*Ne*Te*sin [§] 2/2			611	6	11		
					Total			1790	1136			
Vertical Loads							Max	Min	Max	Min		
Weight of Earthwire					Ne*We*Swt		428	-428	428	-428		
Weight of Hardware							10	10	10	10		
					Total		438	-418	438	-418		
Longitudinal Loads							0	0	0	0		
For Conductor							Pant	her ACSR	ACSR	Panther		
Transverse Loads							(KT 1	KT 2			
Wind Load on Conduct	or				Nc*Dc*Swn*Pc*Sin^2 Ω			2069	1948			
Wind Load on Tension Insulator					0.5*Ni*Li*Di*Pi*Cos •			31	131			
Load Due to Deviation				2*Nc*Tc*sin •2/2	1076			2152				
			Total					3176	4231			
							<u></u>					
Vertical Loads							Max	Min	Max	Min		
Weight of Conductor					Nc*Wc*Swt		974	-974	1948	-1948		
Weight of Tension Insu	lator &	Hardw	are		Ni*Wi		50	25	100	50		
					Total		1024	-949	2048	-1898		
Longitudinal Loads								1				
Wind Load on Tension	Insulat	or			0.5*Ni*Li*Di*Pi*Sin •			0		0		
					Total			0		0		
L	1	1	1	1	1							

Annexure-2

Tower Descr	Description 220/110kV MCMV Type KLB Tower with +9M body Extension																											
LOAD CALCULATIONS																												
ForEarthwire		GSW	V 7/3.15 HT GS		For Conductor	CKT 1 CKT 2 Panther ACS ACS R Panther		r	- For Insulator		CKT 1			CKT 2														
Number Ne			1		Number Nc	1	2		Number Ni		1			2														
Diameter De (m)		(0.00945		Diameter Dc (m)	0.021	0.021		Diameter Di (m)		0.255			0.255														
Weight We (kg/m)			0.428		Weight Wc (kgm)	0.974	0.974		Weight Wi (kg)		50			50														
Tension Te (kg)		:	2126.74		Tension Tc (kg)	3782.2	3782.2		Length Li (m)		1.53			2.915														
	CI	CT 1	CK	Г 2	Wind Pressure (kg/m ^2)	CKT 1	CKT 2			L	ine Deviat	ion																
Spans	NC	BWC	NC	BWC	EarthWire Pe	124.37	124.37		Angle Min		¢1			0														
Normal Span Sn (m)		3	35		Conductor Pc	98.2275	103.815		Angle Max		¢2			15														
Wind Span Swn (m)	335	201	335	201	Insulator Pi	117.555	131.97		Wind		Sin^2 Ω1			0.9832														
Max Wt Span Swt1(m)	960	576	1000	600	Angle of Wind	Incidence (degr	ee)		Direction		Sin^2 Ω2			0.9828														
Min Wt Span Sw2(m)	-1000	-576	-1000	-600	θ	6)		Factors		Sin^2 Ω3			1.0000														
			Secu	nity	Requirement	1																						
Wind Direction					()			Broke	n Wire Co	ndition																	
Every day Temperature (32 degree)					75%	Wind																						
For Earthwire									GSW7/	3.15 H	TGS																	
Transverse Loads							CKT 1																					
							Intact Broken			Intact			Broken															
Wind Load on Earthwire	arthwire Ne*De*Swn*I				Ne*De*Swn*Pe*Sin^2Ω		394		236		394			236														
Load Due to Deviation	n				2*Ne*Te*sin #2/2 (NC) & 1	NC/2 for BWC	555		277.5		555			277.5														
																			Total		949		513.5		949			513.5
Vertical Loads							Max	Min	Max	Min	Max	Min	Max	Min														
Weight of Earthwire					Ne*We*Swt		411	-428	247	-247	428	-428	257	-257														
Weight of Hardware							10	10	10	10	10	10	10	10														
			Total				421	-418	257	-237	438	-418	267	-247														
Longitudin al Loadds			Ne*Te*Cos #1/2			0		2127		0		2127																
For Conductor							P	anther	ACSR			ACSRI	Panther															
Transverse Loads							CKT 1				CKT 2																	
						Intact	Broken Intact		t Broken																			
Wind Load on Conductor Nc*Dc*Swn*Pc*Sin^2 Ω						691 415			146	1	876																	
Wind Load on Tension Insulator					0.5 *Ni*Li*Di*Pi*Cos °	*Ni*Li*Di*Pi*Cos°			11.5		98		49															
Load Due to Deviation			2*Nc*Tc*sin \$2/2 & NC/2 for BWC		987		493.5		1975		987.5																	
					Total		1701		92.0		3534		1912.5															
							Intact		Broken		Intact		Broken															
Vertical Loads							Max	Min	Max	Min	Max	Min	Max	Min														
Weight of Conductor					Nc*Wc*Swt		935	-974	561	-561	1948	-1948	1169	-1169														
Weight of Tension Insul	ator &	Hardw	are		Ni*Wi		50	25	25	13	100	50	50	25														
					Total		985	-949	586	-548	2048	-1898	1219	-1144														
Longitudinal Loads							Intact		Broken		Inta	ct	Bro	ken														
Wind Load on Tension I	insulat	or	NC & E	BWC	0.5 *Ni*Li*Di*Pi*Sin °		0		0		0			D														
Conductor Tension			BWC		Nc*Tc*Cos #1/2		0		3782		0		75	64														
			Total				0		3782		0		75	7564														

KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 25 ISSUE 5 2025

AIIIICAUI U-J

Tower Descr	n	220/110kV MCMV Type KLB Tower with +9M body Extension										
LOAD CALCULATIONS												
For Earthwire GSW					F G 1 (CKT 1	CKT 2	For Inculator	CIZT 1	CKT 2		
		//3.131	1165	For Conductor	Panther ACSI	ACS R Panthe	For misurator	CKII	CKI 2			
Number Ne		1			Number Nc	1	2	Number Ni	1	2		
Diameter De (m)			0.00945		Diameter Dc (m)	0.021	0.021	Diameter Di (m)	0.255	0.255		
Weight We(kg/m)			0.428		Weight Wc (kg/m)	0.974	0.974	Weight Wi (kg)	50	50		
Tension Te (kg)			1106.43		Tension Tc (kg)	2285.17	2285.17	Length Li (m)	1.53	2.915		
_	CI	KT 1	CK	Г 2	Wind Pressure (kg/m^2)	CKT 1	CKT 2	Line	Deviation			
S pan s	NC	BWC	NC	BWC	EarthWire Pe	0.00	0.00	Angle Min	¢1	0		
Normal Span Sn (m)		3	35		Conductor Pc	0.00	0.00	Angle Max	¢2	15		
Wind Span Swn (m)	335	201	335	201	Insulator Pi	0.00	0.00					
MaxWt Span Swt1(m)	960	576	1000	600		1						
Min Wt Span Sw2(m)	-1000	-576	-1000	-600								
			Sa	fety	Requirement							
		Wind	Directio	on				Mainten	ance Condi	tion		
I	Every da	ay Tem	perature	:(32 d	egree)	0%	Wind					
For Earthwire								GS W 7/3.15 H	TGS			
Tran sverse Loads							C	KT 1	CKT 2			
							NC	BWC	NC	BWC		
Wind Load on Earthwire					Ne*De*Swn*Pe		0	0	0	0		
Load Due to Deviation				2*Ne*Te*sin ⁴ 2/2		289	145	289	145			
					Total		289	145	289	145		
			OLE				NG	DUC		TRUC		
Vertical Loads			OLF				NC	BWC	NC	BWC		
Weight of Earthwire			2		Ne*We*Swt		822	493	850	514		
Weight of Hardware			2		2	kg	10	10	10	10		
					Total		832	503	866	524		
Longitudinal Loads												
For Broken Wire			2	*	Ne*(0.5*Te)*Cos #1/2		830	1106	830	1106		
For Intact Wire			1.5	*	Ne*(0.5*Te)*Cos +1/2							
For Conductor							Pantl	ter ACSR	ACS R Panther			
Tran sverse Loads							C	KT 1	CI	CT 2		
							NC	BWC	NC	BWC		
Wind Load on Conduct	or				Nc*Dc*Swn*Pc		0	0	0	0		
Wind Load on Tension Insulator				0.5*Ni*Li*Di*Pi		0	0	0	0			
Load Due to Deviation					2*Nc*Tc*sin [‡] 2/2		597	299	1 1 9 3	597		
					Total		<u>597</u>	<u>299</u>	<u>1193</u>	<u>597</u>		
Vertical Loads						OLF	NC	BWC	NC	BWC		
Weight of Conductor					Nc*Wc*Swt	2	1870	1122	3896	2338		
Weight of Tension Insulator & Hardware			Ni*Wi	2	100	50	200	100				
Weight of Lineman and	Tools				1500	Ν	153	153	153	153		
Additional Load at Cros	sarm 1	l'ip s			3500	Ν	357	357	357	357		
					Total		2480	1682	4606	2948		
Longitudinal Loads												
For Broken Wire			2	*	Nc*(0.5*Tc)*Cos *1/2		NC	BWC	NC	BWC		
For Intact Wire		1.5 *		*	Nc*(0.5*Tc)*Cos *1/2		1714	2285	3428	4570		

Tower Descr	iptio	1	220/110kV MCMV Type GLC Tower with +9M body Extension									
LOAD CALCULATIONS												
For Earthwire		GS W 7/3.15 HTGS			For Conductor	CKT 1 Panther ACSI	CKT 2 ACSR Panthe	For Insulator	CKT 1	CKT 2		
Number Ne			1		Number Nc	1	2	Number Ni	1	2		
Diameter De (m)			0.00945		Diameter Dc (m)	0.021	0.021	Diameter Di (m)	0.255	0.255		
Weight We (kg/m)			0.428		Weight Wc (kg/m)	0.974	0.974	Weight Wi (kg)	50	50		
Tension Te (kg)			1106.43		Tension Tc (kg)	2285.17	2285.17	Length Li (m)	1.53	2.915		
<u>Caraa</u>	Cŀ	KT 1	СК	Г 2	Wind Pressure (kg/m^2)	CKT 1	CKT 2	Line	Deviation			
S pans	NC	BWC	WC NC BWC		EarthWire Pe	0.00	0.00	Angle Min	ф1	0		
Normal Span Sn (m)		3	35		Conductor Pc	0.00	0.00	Angle Max	Ф <u>2</u>	15		
Wind Span Swn (m)	335	201	335	201	Insulator Pi	0.00	0.00					
Max Wt Span Swt1(m)	960	576	1000	600								
Min Wt Span Sw2(m)	-1000	-576	-1000	-600								
			Anti	casca	ading Condition				<u>.</u>			
Wind Direction						0.04	XX / 1	Maintenance Condition				
Every day Temperature (32 d					egree)	0%	Wind		mag			
For Earthwire								GS W 7/3.15 H	ZT 2			
Transverse Loads							BWC		BWC	XI 2		
Wind Load on Forthwine					Na*Da*Swa*Da		DWC 0		DWC 0			
Vind Load on Earthwire			1*No*To*oin \$2/2		144		144					
Load Due to Deviation							144		144			
					10(a)		144		144			
Vertical Loads							BWC		BWC			
Weight of Earthwire			1		Ne*We*Swt		411		428			
Weight of Hardware			1		10	kg	10		10			
					Total		421		438			
Longitudinal Loads												
For Broken Wire			1	*	Ne*(Te)*Cos \\$1/2		1106		1106			
For Conductor							Pantl	her ACSR ACSR Panth				
Transverse Loads							C	CKT 1	KT 2			
						BWC		BWC				
Wind Load on Conduct	or				Nc*Dc*Swn*Pc		0		0			
Wind Load on Tension	Insulat	or			0.5*Ni*Li*Di*Pi		0		0			
Load Due to Deviation				1*Nc*Tc*sin \$2/2		298		597				
					Total		<u>298</u>		<u>597</u>			
Vertical Loads							BWC		BWC			
Weight of Conductor					Nc*Wc*Swt	1	935		1948			
Weight of Tension Insu	lator &	Hardw	are		Ni*Wi	1	50		100			
					Total		985		2048			
Longitudinal Loads								1				
For Broken Wire			1	*	Nc*(Tc)*Cos ¢1/2		BWC		BWC			
							2285		4570			

Annexure -4

Conclusions

The transmission tower is a critical component of power infrastructure, supporting extra high-tension conductors to transmit electricity reliably under varying climatic conditions and complex loading scenarios. In transmission projects, towers typically account for 45% to 60% of the total project cost, making optimized tower design essential for cost-effective implementation. Each transmission tower is uniquely

designed based on several factors, including conductor configuration, base width, voltage level, terrain, wind zone, reliability requirements, span length, and deviation angles. The 110 kV/220 kV MCMV transmission tower presented in this study is specifically designed to upgrade the existing 110 kV double circuit line without requiring additional right-of-way (ROW). This innovative solution enables an increase in transmission capacity from 140 MW to 740 MW using the same corridor.

In a densely populated state like Kerala, where land acquisition for new transmission corridors is highly challenging, this design offers a practical and scalable solution. It addresses the growing electricity demand driven by the proliferation of electric vehicles, increased use of air conditioning, and modern household appliances. This tower serves as a key enabler in achieving the state's goal of enhancing transmission capacity from 6,000 MW to 10,000 MW by 2030, making it a significant step toward sustainable and future-ready power infrastructure.

References

- Chopra, A.K., & Das, A. (2017). Analysis and Design of Transmission Line Structures. Wiley, New York.
- Fragility of transmission tower-line system subjected to concurrent wind and ice accretion- M.Y. Xiao, W.X. Zhou, G. Bitsuamlak, H.P. Hong * Department of Civil and Environmental Engineering, University of Western Ontario, N6A 5B9, Canada
- Feldman, A., & Kennedy, D. (2021). Modern Approaches to Structural Safety of Transmission Towers. Structural Engineering Journal, Volume 38, Issue 4, pp. 525-536.
- Indian Standards (IS 802 Part 1/Section 1: 2015). Code of Practice for Design, Fabrication, and Erection of Steel Structures for Transmission Line Towers and Substations: Part 1 - General Requirements, Bureau of Indian Standards, New Delhi, 2015.
- Indian Standards (IS 802 Part 1/Section 2: 2016). Code of Practice for Design, Fabrication, and Erection of Steel Structures for Transmission Line Towers and Substations: Part 2 - Loads and Load Combinations, Bureau of Indian Standards, New Delhi, 2016.
- International Journal of Civil Engineering and Technology (IJCIET). Study on the Upgrading of Transmission Lines for Increased Power Capacity. Vol. 12, No. 9, September 2024, pp. 10-20.
- Jain, S.K., & Agarwal, R. (2019). Design of Transmission Line Towers: A Structural Engineering Approach. Second Edition, Vikas Publishing, New Delhi.

- 8. KSEBL (Kerala State Electricity Board Limited). Design Documents for Transmission Line Tower Foundations, Transmission Line Engineering Department, KSEBL, 2023.
- 9. Manual on Transmission Lines Publication No.323.
- Raghavendra, P., & Thomas, V. (2020). Geotechnical Investigations for Transmission Line Foundation Designs. Geotechnical Research Papers, Volume 15, pp. 112-126.
- 11. Reddy, B.V., & Srinivasan, S. (2018). Soil-Structure Interaction in Foundation Design for Transmission Towers. Springer, Singapore.