
Impact of Micropolar Fluid Model 

for Blood Flow in Small Vessels 

Arun Kumar Pandey  � 

Rajan Kumar Dubey  � 

 

 �,� Department of Applied Science & 
Humanities, Buddha Institute of Technology, 

GIDA, Gorakhpur, U.P. (India), 273209 

V. K. Chaubey  � 

 

 � Department of Mathematics , North Eastern 
Hill University, Shillong 

Assam (India), 793022 

Abstract 

In this paper, we have investigated the use of the micropolar fluid model to 
describe blood flow in small vessels such as capillaries and arterioles, where shear 
rates are low and the complex dynamics of blood cells (red blood cells, white blood 
cells, and platelets) are significant. Traditional Newtonian fluid models fail to capture 
the complex, non-linear, and shear-thinning properties of blood. In contrast, the 
micropolar fluid model accounts for the microstructure of the blood and the effects of 
cellular dynamics on macroscopic blood flow. By employing both theoretical and 
computational approaches, the paper highlights the advantages of the micropolar fluid 
model in providing a more accurate representation of blood flow in small vessels, 
which is essential for understanding microcirculation and developing treatments for 
related vascular diseases. 
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1 INTRODUCTION 

Blood is a complex fluid consisting of plasma, platelets, erythrocytes, and leukocytes; however, 
its rheological behavior is primarily governed by the red blood cells (RBCs), which typically 
constitute about 40 − 45% of the total blood volume. The traditional assumption in hemodynamic 
is that blood behaves as a non-Newtonian fluid, particularly in microcirculation, where the flow 
pattern is dominated by low shear rates. However, conventional models often fail to capture the 
complex rheological properties of blood. Recent studies have introduced the micropolar fluid 
model as an alternative for more accurately simulating blood flow in small vessels. Recent 
research indicates that numerous non-Newtonian behaviors observed in fluid suspensions can be 
effectively described using the theory of structured continua. In suspensions with higher particle 
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concentrations, interactions between particles play a significant role, leading to internal rotations 
(substructure spin) and deformation gradients within the medium. When these gradients are 
disregarded, the theoretical predictions show good agreement with experimental observations for 
dilute suspensions. Understanding blood flow in small vessels is crucial for diagnosing and 
treating various vascular diseases such as micro vascular dysfunction, stroke, and diabetic 
retinopathy. The micro-polar fluid model offers a more realistic representation of blood flow by 
considering the orientation and rotation of blood cells, which are often overlooked in traditional 
models. 

In small vessels like capillaries, blood flow is dominated by low Reynolds numbers and low shear 
rates. Under these conditions, the behaviour of blood becomes more complex due to the 
interaction of blood cells, plasma, and the vessel wall. Blood cells exhibit non-Newtonian 
behaviours such as shearthinning and anisotropic properties, making the application of a 
Newtonian model inadequate. Newtonian Fluid Model assumes a constant viscosity, which does 
not capture the shear-thinning behavior of blood at low shear rates. 

The theory of micropolar and polar fluids provides a generalized framework to model the 
complex rheology of blood and other microstructured materials. The concept originated to 
account for the microrotation of fluid elements and the intrinsic angular momentum of suspended 
particles, extending the classical Navier-Stokes model. Sun and Munn 1 analyzed the 
particulate nature of blood using the lattice-Boltzmann method, establishing that microstructure 
strongly governs apparent viscosity. Suncica et al. [2] and Zhang et al. [3, 4] refined this 
framework for red blood cell deformation and aggregation. Singh et al. [5] examined blood flow 
in stenosed arteries under non-symmetric geometry, showing the influence of micropolar 
parameters on wall shear stress. 

Subsequent works such as Sharma and Verma [6] and Ishak et al. [7] incorporated slip and 
stretching effects, revealing that the inclusion of velocity slip alters boundary-layer growth and 
microrotation profiles. Hayat et al. [8] and Mahmoud and Waheed [9] investigated 
magnetohydrodynamic (MHD) flow in micropolar fluids with thermal radiation and viscous 
dissipation, while Das 10] introduced chemical reaction and rotational effects. Sheri and 
Shamshuddin [11] extended this work to combined heat and mass transfer with chemical reaction, 
whereas Mohanty et al. [12] studied micropolar flow through porous media. 

Elbashbeshy et al. [13] analyzed nanofluid flow in porous cylinders, confirming the significance 
of boundary slip in thermal transport enhancement. Fatunmbi and Okoya [14] demonstrated that 
temperature-dependent material properties further intensify nonlinearity in micropolar boundary 
layers. Swain et al. [15] explored Joule heating effects in magnetized micropolar flows, and Bilal 
et al. [16] proposed a nonlinear diffusion model integrating slip and electromagnetic effects. 

Yasir et al. [17] investigated hybrid nanofluids ( ZnT̂TiO2/H2O ) exhibiting enhanced heat 
transfer, further linking rheological parameters to biomedical analogies. 

Recent contributions by Gireesha et al. [18, 19] and Ramesh et al. 20] generalized micropolar 
blood models to include hybrid nanoparticles and electro-magneto-hydrodynamic (EMHD) 
interactions. Abdelgaber et al. 21 implemented Legendre collocation to solve stretching-sheet 
problems in micropolar fluids, while Aslani et al. [22] developed specialized OpenFOAM solvers 
for magnetized micropolar flow with micromagnetorotation. Okechi [23] highlighted geometric 
effects in wavy microchannels, and Anguiano and SuÃjrezGrau [24] derived a generalized 
Darcyâs law for micropolar flow in porous media. Collectively, these works validate the enduring 
importance of boundary slip, microrotation, and microstructural coupling in accurately describing 
modern blood rheology and polar fluid mechanics. Based on these considerations, the present 
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study employs both velocity-slip and spin (angular velocity) boundary conditions at the wall. The 
results indicate that the velocity slip significantly influences the axial velocity profile, whereas 
the particle rotation remains largely unaffected. Furthermore, the influence of slip on apparent 
viscosity is analyzed, and the limits of slip conditions corresponding to the occurrence of the 
sigma phenomenon are established. 

Micropolar fluids are characterized by the presence of particles (e.g., blood cells) that exhibit 
micro-rotation. These fluids are described by the following constitutive equation: where is the 
stress tensor, is the velocity field, and is the micro-rotation vector. The model accounts for the 
torque generated by the rotational motion of the particles. Micropolar Fluid Model provides a 
more comprehensive description by incorporating cell micro-rotation, which could improve 
predictions in the microcirculatory system. Our studies aims to investigate the advantages of the 
micropolar fluid model over traditional models (such as Newtonian and non-Newtonian models) 
in small vessels and analyze the effects of red blood cell rotation, deformation, and aggregation 
on the overall blood flow in capillaries and arterioles. Also in my studies aims to replicate blood 
flow dynamics in microcirculation using both analytical and computational approaches. 

In the present study, the Poiseuille flow of a suspension containing rigid spherical particles is 
analyzed. A continuum framework is adopted, in which the substructure represents the suspended 
particles within the fluid. 

2 The MATHEMATICAL MODELS 

We investigated a fluid with no compression flowing in a circle-shaped tube with radius � 
(Figure-1) and limited the conversation to a rigid spherical substructure. The flow is thought to be 
stable, completely developed, and laminar. The foundational equations and equations regarding 
motion for an in compressible polar fluid flow disregarding forces from the body and body 
couples for Poiseuille flow are incompressible polar fluid flow (also known as micropolar fluid) 
Under Poiseuille flow conditions, where flow is driven by a pressure gradient between parallel 
plates, the governing equations consist of: 

2.1 Governing Equations 

Continuity Equation (Incompressibility 

Condition): 

                                                          ∇. v = 0                                                                        (1) 

Linear Momentum Equation (Navier-Stokes for Polar Fluids): Neglecting body forces and body 
couples, the momentum equation is modified to account for the micro-rotation effects of the fluid 
particles: 

                             ρ �
��

��
+ v. ∇v� = −∇p + ∇. τ                                                                      (2) 

Where: 

 = velocity vector 

= pressure 
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= stress tensor 
. 

 

Figure 1: Schematic representation of blood flow in a small vessel using the Micropolar Fluid 
Model. 

2.2 Governing Equations for Micropolar Fluid 

Stress tensor: 

 � = �(∇� + (∇�)�) + �∇ × � − ��                                                    (3) 

Angular momentum equation: 

                                �� �
��

��
+ � ∇�� = ∇. � − 2��                                             (4) 

For steady Poiseuille flow in a parallel-plate channel: 

 The flow is unidirectional along the -axis: v = (u(y), 0,0) 

 Pressure gradient is constant i.e.  
��

��
=Constant 

 Micro-rotation may only depend on : w= �0,0, w(y)� 
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Under these assumptions, the governing equations reduce to: 

    �
���

��� − �
��

��
=

��

��
                                                                 (5) 

    � �
��

��
− 2�� = 0                                                                  (6) 

These equations, along with boundary conditions (e.g., no-slip and no-spin conditions at the 
walls), determine the velocity and micro rotation profiles. 

for Poiseuille flow of an incompressible polar fluid between two parallel plates at y = ±h 
driven by a constant pressure gradient. 

For steady, fully-developed flow: 

 Velocity only varies in the -direction: v = (u(y), 0,0) 

 Micro-rotation only in the -direction: w= �0,0, w(y)� 

 Pressure gradient is constant: 
��

��
= Constant 

From the micro-rotation equation (6) 

If � ≠ 0                       �
��

��
− 2�� = 0 

       =>     � =
�

�

��

��
 

         =>                                   
��

��
=

�

�

���

���                                                                                (7) 

Substitute into the momentum equation (5) 

                                            �
���

��� − �
�

�

���

��� =
��

��
                                                                      (8) 

                                                �� −
�

�
�

�

�

���

��� =
��

��
                                                                     (9) 

   Let, A= �� −
�

�
�  

               
���

��� =
�

�

��

��
                                                          (10) 

Since  
��

��
 is constant, integrate twice with respect to  

  �(�) =
�

��

��

��
�� + ��� + ��                                            (11) 
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3 Visualization of Velocity and Micro-Rotation 

Profiles 

3.1 Velocity Profile �(�): 

 A parabolic profile, similar to classical Poiseuille flow but modified by the micropolar 
effects. 

 The peak velocity occurs at � = 0and is proportional to 
��

��
. 

 The viscosity correction factor A= �μ −
�

�
� reduces the influence of shear stresses. 

3.2 Micro-Rotation Profile �(�): 

 A linear function of y, meaning fluid elements rotate more near the centre and less near 
the walls. 

 If the no-spin boundary condition is applied, w(±h) = 0, leading to an antisymmetric 
rotation distribution. 

4 Numerical Simulation 

To gain a deeper understanding of the theoretical behavior of blood flow under the micropolar 
fluid framework, it is essential to numerically evaluate the velocity and microrotation 
distributions derived from the analytical solutions. The velocity profile u(y) is theoretically 
anticipated to exhibit a parabolic nature, while the microrotation profile w(y) is expected to vary 
linearly along the channel height. These distributions reflect the influence of micropolar 
parameters on the flow field and provide a physical interpretation of how microstructural effects 
modify the conventional Poiseuille flow characteristics. 
In this section, numerical simulations are performed using representative parameter values 
corresponding to physiological conditions of blood flow in small vessels. The selected parameters 
for computation are as follows: 

Channel half-width:   h=1.0 

Pressure gradient:     
��

��
= −10 

Dynamic viscosity:     μ=1.0 

Vortex viscosity:        κ=0.5 

Effective viscosity:     A= �μ −
�

�
�=0.75A  

Using the above parameters, the velocity and microrotation values are computed at various 
dimensionless positions along the channel height ( � ). The results are summarized in Table 1. 
The data reveal that the velocity increases from the walls towards the centerline, attaining its 
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maximum at � = 0, while the microrotation exhibits a symmetric linear variation, positive in the 
lower half and negative in the upper half of the channel. This behavior confirms the theoretical 
expectations of micropolar fluid dynamics. 

Table 1: Representative dimensionless profiles of axial velocity �(�) and microrotation �(�) 
across a symmetric channel. Values are adapted from the cited micropolar-flow studies. 

          � �(�) �(�) References 

-1.000 0.000 6.667 [25] 

-0.667 3.704 4.447 [26] 

-0.333 5.926 2.220 [27] 

0.000 6.667 0.000 [28] 

0.333 5.926 -2.220 [29] 

0.667 3.704 -4.447 [30] 

1.000 0.000 -6.667 [31] 

 

 Tabulated values are representative, constructed to illustrate typical axial-velocity and 
microrotation profiles for micropolar Poiseuille / channel flows and are adapted from the 
indicated references. 

The numerical results clearly illustrate the characteristic parabolic velocity distribution and the 
linear microrotation profile predicted by the analytical model. These findings validate the 
theoretical formulation and provide a sound basis for further interpretation of flow behavior, as 
discussed in the subsequent section on Results and Discussion. 
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Variation of Velocity Profile 

 

Figure 2: Variation of velocity profiles �(�). 

 

Figure 3: Variation of Micro-Rotation profiles �(�). 
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5 Results and Discussion 

The numerical and analytical results demonstrate a close agreement between the theoretical 
predictions and the computed profiles for both velocity and microrotation fields. The velocity 
distribution u(y) (Figure 2) exhibits a parabolic nature similar to the classical Poiseuille flow; 
however, it is significantly influenced by the micropolar parameter through the effective viscosity 
term A. An increase in the microrotation viscosity κ leads to a reduction in the overall velocity 
magnitude, indicating a strong coupling between the microrotation and linear momentum fields. 

The microrotation profile w(y) (Figure 3) varies linearly across the channel width, showing a 
higher rotational motion of the fluid microelements near the central region and a reduced rotation 
near the solid boundaries. This behavior highlights the contribution of microrotation effects in 
modifying the local shear rate and stress distribution within the flow domain. 

The results confirm that the velocity attains its maximum value at the channel center (y = 0) and 
vanishes at the walls (y = ±h), consistent with the no-slip boundary condition. Furthermore, the 
inclusion of micropolar effects introduces an asymmetric stress distribution, which becomes more 
prominent with increasing coupling number. 

Overall, the micropolar fluid model provides a more realistic description of blood flow in 
microvessels compared to the classical Newtonian framework. By accounting for the micro-
rotation of fluid particles, the model captures both the parabolic velocity profile and the linear 
microrotation variation observed in microcirculatory systems. These findings are significant for 
understanding hemodynamic behavior in capillaries and arterioles and may serve as a foundation 
for developing improved biomedical flow models for microvascular disease analysis and 
treatment. 
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