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Abstract

This study models the efficacy of testing in controlling the global
outbreak in the presence of two preventative strategies. A thorough
investigation of the impacts of testing, that assists in the control of the
epidemic, is done using the non-linear mathematical model of COVID-
19 and optimal control theory. We demonstrate the existence of an
optimal control set and examine the optimality, transversality, and
necessary and sufficient requirements. The system’s optimality is de-
termined analytically and resolved numerically.
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1 Introduction

The COVID-19 pandemic is one of the world’s most serious public health
crises. This pandemic occurred due to out break of SARS-CoV-2 virus [1]
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in @ medical institute in Hubei province, China in the month of December
2019. COVID-19 has traveled across several countries, and the sickness has
spread to the majority of the world in a relatively short period of time. It
spreads quickly when one person comes into touch with another, resulting
in @ human-to-human infection. The outbreak later infected more than 200
countries since March 2020, becoming a pandemic due to the high number
of deaths. It has left an impact on the social, economical, political and
cultural lives of people all over the world. Due to this with a confirmed
death toll of 171, COVID-19 was decided to a Public Health Emergency of
International Concern (PHEIC) on January 30, 2020. By the end of 2020,
the number was 1813188. However, preliminary projections indicate that at
least 3 million deaths will be directly related to the COVID-19 pandemic
worldwide in 2020, which is 1.2 million more deaths than have been officially
reported. According to WHO in the first week of June 2023, there have
been 767,750,853 confirmed cases of COVID-19 including 6.941,095 deaths,
reported to WHO (https:// covid19.who.int). AS of 5 June 2023, a total of
13,396,086,098 vaccine doses have been administered. From the COVID-19
total of more than 633 million cases and over 6.6 million deaths have been
recorded worldwide.[2, 3, 4, 5, 6].

The use of vaccines is a very efficient way of preventing and alleviating viral

infection [7]. The efficacy of the test could also be a great way to help control
the pandemic. Many researchers have done many papers to study the efficacy
of the vaccine. Because the effect of the vaccine can prevent the spread of
disease inside the people. Vaccines offer direct protection by making people
less susceptible to sickness or infection. Vaccines provide indirect safeguards
by decreasing the number of people infected or contagious in a population.
These vaccination effects can be examined in clinical trials by measuring the
efficacy of the vaccine against disease, infection, and disease transmission, as
well as in studies that investigate the vaccine’s indirect impacts [8]. Human
exposure vaccine research studies, in which participants in a randomized con-
trolled trial are purposely exposing to the virus, have the potential to yield
high-quality data on the effect of vaccines on the transmission of viruses [9].
A vaccine’s purpose is typically infection prevention (i.e., sterilizing immu-
nity). The true utility of an effective vaccination, on the other hand, is the
avoidance of infectious disease caused by that infection. It is possible that
it can be seen directly or indirectly in a vaccinated person. Wintachai and
PrA thom (2021) [10] examine the stability of the SEIR model in relation
to vaccination efficacy in the COVID-19 condition. By using Nano-materials
we can optimize the efficacy of vaccines, it was discussed by Y.Liu. et al.
(2014) [11].

With the use of mathematical concepts and hypotheses, overall flow of work,
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technique, cartilage, and consequences can be simply examined. As a result,
biologists are increasingly reliant on mathematics. Biological mathematical
modeling has been done [12, 13, 14]. During simple mathematical modeling,
the relationship combines biological mode, integer order differential equa-
tions that depict their dynamics, and a complex system that defines their
dynamic structure. The optimal control theory is an effective way that gives
several efficient control techniques to reduce or eliminate a disease in the
population. This strategy has been used to remove a number of diseases
from the population in recent years [15, 16, 17, 18, 19, 20, 21].

To the best of my knowledge, the efficacy of testing to control the epidemic
by using optimal control theory has not been considered in any of the previ-
ous mathematical models. As discussed above, a lot of work has been done
only on the efficacy of vaccines. So, we constructed a mathematical model
of COVID-19 to study the efficacy of testing to control the epidemic. Our
research paper is organised as follows: In section 2 we formulate mathemat-
ical model. In section 3 we studied equilibrium analysis. section 4 described
the stability analysis of the model. The model formulation of the optimal
control, invariance and positivity of solution, proof of existence and charac-
terization of optimal control is given in section 5. In section 6 and 7 numerical
simulations and conclusions are described respectively.

2 The model

We consider a SUDR mathematical model and using control theory on it. We
use ¢ and U as case detection parameters which represents the rate of testing
and rate of asymptomatic people going for test that are detected as control
parameter. At any time t, we consider a region with total population N. we
divided whole population into four sub classes: Susceptible (S), Undetected
infectious (U ), Recovered ( Removed) (R), Detected infectious (D) and Test-
ing done (T). A diagram is shown in Figurel to study the efficacy of testing.
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Figure 1: Flow diagram for a model system (2.1) to (2.5).

ds

r =pu—6SU —uS+(1-y)m,
t

du

d_=65U—yU—19TU —uU +ym,
t

dD

—_=9TU —yD — uD,

dt

dR

—_=yU +yD — uR,

dt

dT

P @S — @o(T — To),

(2.1)
(2.2)
(2.3)

(2.4)

(2.5)

with the initial conditions S(0) > 0, U(0) = 0, D(0) = 0, R(0) = 0 and

T(0)=o0.
Description of parameters is defined in Table(1).

Here note that,
S(t) + U(t) + D(t) + R(t) = N(t).

Adding equation (2.1) to (2.5), we have
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Table 1: Table of Description

Variable and
Parameter

Description

£ OTEXI £ AN0OICHL

Susceptible
Undetected infectious
Recovered ( Removed)
Detected infectious
Testing done
Boxline number of testing done
Infected migrants rate
Number of migrants
Transition rate of infection
Inflow rate, Mortality rate (Natural)
Rate of asymptomatic people going for test
Recovery rate of asymptomatic people
Rate of testing

Failure rate of testing

ds du

dD dR

—*+ —+ _—+ = -pu(S+U+D+R)+m

dat  dt
d

dt dt

o, —(S+U+D+R)=pu—-u(S+U+D+R)+m.

dt

Using equation (2.6) in above equation, we get

dar
—=u—uN +m.
dt

(2.7)

This shows that the total population lim:— supN (t) < 1. In the context of
model described above, the assumption holds that all variable and param-
eters associated with the model are non-negativity for every t = 0. This
assumption is significant, reflecting the nature of the system being modeled.
In the positively invariant set, we investigate the above model on

P
Q={(S,UDRT)ER :0=5UDR=<10=<T= —}

®o

This is the model’s region of attraction.
Table 1 provides a description of the parameters used in the model system

(Fig. 1).
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3 Equilibrium analysis

The term “equilibrium point” refers to a state of a dynamical system when
there is no change over time. So, if a system begins from an equilibrium point,
its state will always remain in equilibrium. Finding a disease free equilib-
rium point is our current objective. Then from equation (2.1) to (2.5), only
pandemic equilibrium point E™(S™, U™, R™, D™, T™) exists. The values of
sm uym, R™, D™ and T™ are given as

Sm=u+(1—t.b)m

(3.1)
U™+ u

Rm 14 [Um gum Qo u+ (1- Lll)m
== + To+ —(——%—)}L 3.2
Pl v LS S ryes i (3:2)

m OUT @ u+(l-y)m
D = mTo ++§¥1(W)], (3.3)
T =T & P H ) (3.4)
o BU™+u

Then the root of the quadratic equation (3.5) provides U™.

A1(U™)2 + A,U™ — Az = 0. (3.5)

where the coefficients of equation (3.5) are

A1 = {@ol(y + 9To) + pou}6,
Az = (@Ou + @Om + @oyu + o9 Tou + Dou?) — (@OPYm + Bpou + Bpom)
Az = Ymepopul.

This shows that the uniqueness of positive equilibrium point U™ exist if and
only if

q
A22+ 4A1A> > A>

4 Stability analysis

The investigation of local stability at the equilibrium point of the system pro-
vides insight into the effects of perturbations. Our system can be linearized
with regard to the random equilibrium points E™(S™, U™, R™, D™, T™) in
order to determine the epidemic equilibrium’s stability point and we are given
the equivalent matrix called the Jacobian matrix by
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- 0

b b, 0 0 0

b21 b22 0 0 0
Je=10 by by 0 O §
To ba bm bu 0

bss 0 0 0 bss

Where entries of the matrix Je¢ are given by

b1 =-8U —, b1, = -85S, bis =4,

b1 = 68U, b =65—y—-9T — L, bax =y,

b3z = 9T, bsz = —(y + ), bs1 = ¢,
baz =y, bas=—u, bss = —o.

Proposition. For the fixed parameters of the model system (2.1) to (2.5) with
initial condition the equilibrium point E™(S™, U™, D™, R™, T™) is locally
asymptotically stable if (BU+2u+y+09T) > 8S with (bi1—b22)*+4b12b21 < 0.

Proof:- The Jacobian matrix of the model system (2.1) to (2.5) is given
by J£ defined as above. The eigenvalues, A, of the Jacobian matrix Je is
computed by the equation det(Al — Jg) = 0; i.e., the eigenvalues are the
solution of the characteristic polynomial

(b3z —A)(baa —A)(bss — A){b11b22 — b12b21 — (b11 + b22) + A%} =0.  (4.1)

Now, by solving above equation (4.1) the eigenvalues of the Jacobian matrix
Je is given by

1 \/
Ay = 5{([311 + bn) = (b1 —bn)? + 4buaba},

1 v
A= E{(bll + by) + (by —by)? +4b;yby}

Az =b3sz=—(y+ ),
Aa = bas = —L,
As = bss = —o.

Where, bi1 = -6U — u, b1 = —8S, b1 = 68U and b, =85 -y — 0T — L.
As, b11 + by = —(BU +2u+y +O9T)+ 68S Thus, if (BU+2u+y+9T) > 68S
with (b11 — b22)? + 4b12b21 < 0 then all eigenvalues have negative real part.
Therefore, the equilibrium point of the model system (2.1) to (2.5) is locally
asymptotic stable.
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4.1 Basic reproduction number

The basic reproduction number is defined as a threshold digit that delivers a
value of secondary infections caused by an infected individual class in total
infection duration if every member of the community is susceptible. The
next-generation matrix is a method that allows us to determine the basic
reproduction number. The model is divided into two subparts, R1 and R,
and the system (2.1) to (2.5) with m = 0 has the following form:-

X = R1 — Ra. (4.2)

O O
B6SU - OTU
oTU

Where R;= " 0 4
U 0 U

—8SU +u

(v +)U
+ u)D
Ry = DD;,(R(Z y(’é)+ D&D
Hepo(T - To) — s
us

— du db drR dT dS
and X = dt dt dt dt dt °

In the case of disease free equilibrium point the infected compartment are
U D, RppndT; h i

Now,Ry= °EN &R,= o forlsij<a.

0 0
6Ss-9T 0 0 -OU
~ gT 0 0 W
ThUS, R1 = % 0 00 0 %
0 00 0
0 (]
V+U 0 0 O
~ 0 y+u 0 O
Rz = % _ _ %
14 v u O
0 0 0 o
Here R 120 ;;mc:LR~ » is a matrix whose deteyminant is not equal to zero
Rz_ '>0and R 1 Rz_ Tas non negative matrix; R ; Rz_ is the next generation
matrix.
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i 1 U
i 0 00
~ 0 1 0O o0
nowRy'= 7, HE 0%
yutp?  yptp®op
0 o !
T
In this case
| gs—or O
e 000 -G
.. o2 00 %
R1R51 = v+u ®o .
2270 % 00 o0 d
0 00 0

Then the spectral eigen value about the equilibrium E(1, 0, 0, O, To) point
of the matrix is

6 — 9T,
A= —""2 (4.3)
(v +p)
As a result, the basic reproduction number is provided by
6 — OT,
R =——2. (4.4)
° (v+u)

Thus, by controlling the value of these parameters we can control spread of
the disease.

5 Developing an optimal control model

By selecting appropriate control parameters, we may do this using optimal
control theory. In the model system, we have selected two control parameters,
namely (i) Rate of testing ( i.e., @) (ii) Rate of asymptomatic people going
for test ( i.e., ¥). The parameters ¢ and ¥ are represented by Lebesgue
measurable functions vi(t) and v;(t), respectively on a finite interval [0, tr].
Now, the challenge is to reduce the total cost functional J as stated by

), c
J(vi, v2) = (AU (t) + ézvi + _Zvj)dt (5.1)
0
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Subject to
ds
d_=u—65U—uS+(1—¢p)m, (5.2)
t
du
P BSU — yU — vo(t)TU — uU + Ym, (5.3)
daD
E = va2(t)TU — yD — uDb, (5.4)
d_R =yU +yD — uR, (5.5)
dt
dT
i viS — @o(T — To), (5.6)
with the initial conditions S(0) > 0, U(0) = 0, D(0) = 0, R(0) = 0 and
T(0)=o0.
Here note that,
S(t) + U(t) + D(t) + R(t) = N(t). (5.7)

The positive constant A, B and C within the cost function serve as weight

constants, influencing the |nte$ral components of the functional cost, J. Our
objectlve is to find an optimal control pair ( v* v*) € O that minimizes the

functional J, aiming to

J(vt, v;k) = miny v )eal(vi, V2) (5.8)
1 2

in which the control set is defined as
O ={(vy, v2)] vi ismeasurableand O<vi{t)<1 for t€]0,tr],i=1,2}

is the needed set for the controls.
To keep things simple, we can write vi(t) = vi and vz(t) = vz

5.1 Consistency and positivity of solutions
In this section, we demonstrate the persistence and positive of the existing

solutions for the considered system (5.2) to (5.6).

Theorem 5.1.1 The system of equation (5.2) to (5.6) makes biological sense
in the region

Q={(SUDRT)ER, :0=S5UDR=<10=<T= f}.
®Po

It is attractive and positively invariant with regard to the system of equation
(5.2) to (5.6).
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Proof By combining the first four equations of the model system (5.2) to
(5.6) mentioned before and taking0 < vi(t)<1 for i=1,2

Thus,

dTr
— < (u+m)—uT.
dt

The remainder of the proof is straightforward by using integration and limits.

Theorem 5.1.2 Our model system’s (5.2) to (5.6) solutions are all posi-
tive.
Proof The theorem’s proof 5.1.2 is rather simple.

5.2 Existence of optimal control

The theorem establishes the existence of an optimal control state, as demon-
strated in theorem 5.2.1 (by Fleming et al. 1975), in the following manner:

Theorem 5.2.1 Consider the control challenge associated with model
system (5.2) to (5.6) there exist V = (v*, v*) € O in such a way that
1 2

J(v*, v¥) = miny v yeol (v, V2)
1 2 12

Proof The following prerequisites must be met for the optimum control to
exist:

(i) The associated state variables and set of controls indicated by the sym-
bol Q are not empty. The solutions of model system (5.2) to (5.6) exists
found in (Lukes 1982) Theorem 9.2.1.

As a result, the set Q is not empty.

(ii) The set © is convex and closed. From definition, it is clear that O is
closed. Given (01, $2) € © and t € [0, 1] such that $1 = (v11, v21) and
% = (vi2, v22), the line th+(1-t)9: = (tvii+(1-t)via), tvar+(1-t)va2)
belongs to O since each of its components is in between zero and one.
Thus © is convex.

(iii) The right hand side of the state model system (5.2) to (5.6) is bounded
by a linear function in the state and control variable. System (5.2) to
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(5.6) is linear with respect to vi and v,. Beside its solution are ab-
solutely continuous(Lukes 1982), which implies that they are bounded
and statement (iii) is satisfied.

(iv) The content of the objective function is concave over O. The specific
expression for the integral component K of the objective function is
provided by by

B C
KU v,v)=AU(t)+ vZ+ V
1 2 ? 1 3 2

It can be verify for any (1, %2) € © and t € [0, 1],

K(t91 + (1 — t)92) = tK(91) + (1 — t)K(92)

This shows that K is concave.

(v) There exist constants g1, g2 > 0 and r > 1 such that the integrand K
of the objective functional satisfied

K(U, v, v2) < g1 + qa(|va|? + |v2|2)72.

Since S is bounded [22], there exist a constant g1 > 0 in such a way
that AU < g1 and also assuming g2 = maxv; where i =1, 2 we get

K(U, v, v2) < g1 + qa(|v1|? + |v2]|2)7?

with r = 2.
Hence, condition (v) is met, affirming that the optimal system possesses
a unique solution for t; that’s adequately small [22].

5.3 Characterization of optimal control

The Pontryagin’s Maximum Principle (Pontryagin et al. 1962) provides the
fundamental requirements that an optimum solution must meet.This princi-
ple turns equations (5.1)-(5.6) into a problem that characterizes the following
Hamiltonian H in terms of control variable H(S, U, D, R, T, A1, A2, A3, Aa, As)
by minimizing it point wise. H(S, U, D, R, T, A1, A2, A3, As, As) = AU (t) +
szzl + %vzz +A1{u — BSU — uS +(1 — p)m} + A2{BSU — yU — vo(t)TU —uU +
Ym}+A3{va(t)TU — yD — uD} + Aa{yU +yD — uR} + As{v1S — o(T — To)}
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where A;, i=1, 2, 3, 4 are co-state functions, also known as adjoint functions
which can be defined through solving the system of differential equations:

A== =—{A(-6U-p+ABU+AV),

1 S !

Ar = _OH =—{A+A (-BU)+A (BS—y - v (T — ) +A v (T +A v},
2 ouU

A== = (v - +Ay,

3 oD

] oH

A4= _E = _{A4(_M)}/

Ar=—0H =L Av(U+A Vv (U -A @},

5 oT 22 32 570

meeting the condition Ai(tf) =0fori=1, 2, 3, 4 satisfies the transversality
requirement. These condition are due to independent of state at the final
time of the objective functional.

The Hamiltonian is minimized concerning vi1 and v2 at the optimal value v¥
and v* indicating the derivative of the H concerning vi1 and v, at v* and v*

must be zero. Since

B C
H= vZ+ v2+(A —/\)v(t)TU+/\ vS (5.9)

?1 22 3

Now, differentiating equation (5.9) partially with respect to vi and v, respec-
tively, we get
OH

— = v1B + AsS (5.10)
C)Vl
and OH
— =v2C+ (A3 — A)TU (5.11)
de
The optimal control without restriction v and vs satisfied g/-/ 0 and
¢ =0atvi=v* and vy = v* respectlvely due to Pontryagin’s 'Maximum
0V2

Principle (PMP).
Thus, we have = v* = —455 gnd y* = @2V

1 B 2 C
Now, making use of the control’s bound, the ideal control is defined as

AsS
v = max{0, min(1, =2 )} (5.12)
! B
and
Ay —A3)TU
v* = max{0, min(1, (A2 = A5)TU )} (5.13)
2
C
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As a result, we have the following theorem.

Theorem 7.1 Equation (5.12) and (5.13) describes the optimal control v¥

and v¥ that optimizing the model system (6)to maximizes the objective func-
tion (5.1).

We achieve the uniqueness of the optimum control for small ¢ due to the
a priori boundedness of the state and adjoint functions and the resulting
Lipschitz structure of the ordinary differential equations.

6 Numerical Simulation

We demonstrate numerical simulation of the dynamical systems (2.1) to (2.5)
in this section to support the findings of theory. We have selected the fol-
lowing as the default values for this purpose:

6=09 u=0.2 =005 To=4 y=025 m=2500 ¢ =0.6,
Y =0.5 @o=0.1.

It is possible to verify that the stability conditions and the presence of an

Figure 2: Variation of susceptible population without testing.

endemic equilibrium E, are fulfilled. With regard to E, the point of equi-
librium values have been determined as:

S* = 0.4975313, U* =2791.785, D* = 2166.793, R* = 2231.36,

T* = 6.985188.
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Variation of S(t) with Testing T(t)
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Figure 3: Variation of susceptible population with testing.
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Figure 4: Optimal control profile v1 and v2 over time, considering A=3, B =
6, and C = 3.
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Then, using an iterative approach and the Runga-Kutta fourth order pro-
cedure from Lenhart et al.(2007), we deal with the optimality system through
numerical calculations while making some preliminary assumptions about
the control variables regarding the same set of values for the parameters as
above. Making use of the Runga-Kutta fourth order iterative approach, the
system of state variables is first solved forward in time, and then the system
of adjoint variables is solved backward in time. The cost for such controls is
modified after every iteration. As long as the intended convergence criteria
is not met, we will have continue the evolution. We start by setting the ini-

Variation of Cost Function | with control vy

Variation of Cost Function | with contrel v,

%2 | E—rrETE T

Figure 5: Variation of cost function with respect to time with control vi and
vz individually.

tial conditions as follows: S(0) = 0.8, U(0) = 0.1, D(0) = 0.05, R(0) = 0.1,
T(0)= 6.5. The maximum values for the parameters of control are restricted
to Uimaex =1 and u2max = 1. To ensure the enforcement of control strategies,
the duration of the period is reduced to 100 days.

In the analysis, we observe the influence of testing on susceptible individu-
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Wariation af Cosl Punclion | with control v, end v

Figure 6: Variation of cost function with respect to time with control vi and
Va.

als, as depicted in Figure . It was noted that the number of susceptible
individuals increases when there is no COVID testing conducted, whereas in
its presence, the count of susceptible individuals decreases.

We chose to set the weight factors associated with susceptibility and the
effectiveness of testing to be equal, specifically A=3, B=6, and C = 3.
The impact of these weight constants on the pattern of optimal controls is
depicted in Figure 4. These figures distinctly demonstrate the crucial role
played by the optimal control profile in guiding the optimal control strategy.
Furthermore, we’ve analyzed the breakdown of cost formation to determine
more effective wellness control strategies in Figure . From these figures,
it’s evident that the cost is notably high in the absence of any control mea-
sures. Additionally, it's observed that with a single control measure, the
cost differs only slightly compared to the scenario where no control measures
are used. However, it’s notable that when both control measures are em-
ployed, the optimal cost significantly decreases compared to the cases where
either a single or no control measure is used. Hence, it suggests that employ-
ing both control strategies is far more effective than utilizing only a single
control measure on the susceptible population, consequently reducing their
numbers.
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7 Conclusions

In this study, we have constructed a mathematical model to show the effi-
cacy of testing by using two control parameters: the rate of testing and the
rate at which asymptomatic people going for test to control the epidemic.
Our findings reveal the presence of two equilibrium points: one represent-
ing the disease-free equilibrium Ei(1, 0, 0, O, To), and the other representing
the endemic equilibrium point E»(S™, U™, D™, R™, T™) for Ro > 1. The
disease-free equilibrium point is locally asymptotically stable when Ro < 1.
Additionally, our analysis indicates that a pandemic equilibrium point is both
locally and globally stable under specific conditions. Numerical simulations
have been conducted to verify these analytical findings. It has been observed
that in the absence and presence of rate of testing, the population of suscep-
tible increases and decreases, respectively.

Our findings strongly indicate that testing plays a significant role in reduc-
ing the susceptible population and subsequently curbing the spread of dis-
eases. This comprehensive investigation highlights the effectiveness of testing
strategies coupled with appropriate treatments in eradicating susceptibility
to diseases within a population. Implementing testing protocols offers the
potential for disease monitoring and prevention, reducing complications, and
enhancing overall quality of life. However, given the considerable costs asso-
ciated with testing programs, we have sought an optimal solution using op-
timal control theory. This theory enables us to identify the optimal rates for
implementing and disseminating testing actions. We’ve established the pres-
ence of a controlled system modality and employed Pontryagin?s Maximum
Principle to derive optimal control characteristics, which are corroborated by
numerical examples. Therefore, the optimal solution provides a cost-effective
approach to controlling epidemics by employing efficacy testing strategies on
the susceptible population, consequently aiding in disease control.
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