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Abstract 

This study models the efficacy of testing in controlling the global 
outbreak in the presence of two preventative strategies. A thorough 
investigation of the impacts of testing, that assists in the control of the 
epidemic, is done using the non-linear mathematical model of COVID- 
19 and optimal control theory. We demonstrate the existence of an 
optimal control set and examine the optimality, transversality, and 
necessary and sufficient requirements. The system’s optimality is de- 
termined analytically and resolved numerically. 
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1 Introduction 

The COVID-19 pandemic is one of the world’s most serious public health 
crises.  This pandemic occurred due to out break of SARS-CoV-2 virus [1] 
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in a medical institute in Hubei province, China in the month of December 
2019. COVID-19 has traveled across several countries, and the sickness has 
spread to the majority of the world in a relatively short period of time. It 
spreads quickly when one person comes into touch with another, resulting 
in a human-to-human infection. The outbreak later infected more than 200 
countries since March 2020, becoming a pandemic due to the high number 
of deaths. It has left an impact on the social, economical, political and 
cultural lives of people all over the world. Due to this with a confirmed 
death toll of 171, COVID-19 was decided to a Public Health Emergency of 
International Concern (PHEIC) on January 30, 2020. By the end of 2020, 
the number was 1813188. However, preliminary projections indicate that at 
least 3 million deaths will be directly related to the COVID-19 pandemic 
worldwide in 2020, which is 1.2 million more deaths than have been officially 
reported. According to WHO in the first week of June 2023, there have 
been 767,750,853 confirmed cases of COVID-19 including 6.941,095 deaths, 
reported to WHO (https:// covid19.who.int). AS of 5 June 2023, a total of 
13,396,086,098 vaccine doses have been administered. From the COVID-19 
total of more than 633 million cases and over 6.6 million deaths have been 
recorded worldwide.[2, 3, 4, 5, 6]. 
The use of vaccines is a very efficient way of preventing and alleviating viral 
infection [7]. The efficacy of the test could also be a great way to help control 
the pandemic. Many researchers have done many papers to study the efficacy 
of the vaccine. Because the effect of the vaccine can prevent the spread of 
disease inside the people. Vaccines offer direct protection by making people 
less susceptible to sickness or infection. Vaccines provide indirect safeguards 
by decreasing the number of people infected or contagious in a population. 
These vaccination effects can be examined in clinical trials by measuring the 
efficacy of the vaccine against disease, infection, and disease transmission, as 
well as in studies that investigate the vaccine’s indirect impacts [8]. Human 
exposure vaccine research studies, in which participants in a randomized con- 
trolled trial are purposely exposing to the virus, have the potential to yield 
high-quality data on the effect of vaccines on the transmission of viruses [9]. 
A vaccine’s purpose is typically infection prevention (i.e., sterilizing immu- 
nity). The true utility of an effective vaccination, on the other hand, is the 
avoidance of infectious disease caused by that infection. It is possible that 
it can be seen directly or indirectly in a vaccinated person. Wintachai and 
PrÃ thom (2021) [10] examine the stability of the SEIR model in relation 
to vaccination efficacy in the COVID-19 condition. By using Nano-materials 
we can optimize the efficacy of vaccines, it was discussed by Y.Liu. et al. 
(2014) [11]. 
With the use of mathematical concepts and hypotheses, overall flow of work, 
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technique, cartilage, and consequences can be simply examined. As a result, 
biologists are increasingly reliant on mathematics. Biological mathematical 
modeling has been done [12, 13, 14]. During simple mathematical modeling, 
the relationship combines biological mode, integer order differential equa- 
tions that depict their dynamics, and a complex system that defines their 
dynamic structure. The optimal control theory is an effective way that gives 
several efficient control techniques to reduce or eliminate a disease in the 
population. This strategy has been used to remove a number of diseases 
from the population in recent years [15, 16, 17, 18, 19, 20, 21]. 
To the best of my knowledge, the efficacy of testing to control the epidemic 
by using optimal control theory has not been considered in any of the previ- 
ous mathematical models. As discussed above, a lot of work has been done 
only on the efficacy of vaccines. So, we constructed a mathematical model 
of COVID-19 to study the efficacy of testing to control the epidemic. Our 
research paper is organised as follows: In section 2 we formulate mathemat- 
ical model. In section 3 we studied equilibrium analysis. section 4 described 
the stability analysis of the model. The model formulation of the optimal 
control, invariance and positivity of solution, proof of existence and charac- 
terization of optimal control is given in section 5. In section 6 and 7 numerical 
simulations and conclusions are described respectively. 

 

2 The model 

We consider a SUDR mathematical model and using control theory on it. We 
use φ and θ as case detection parameters which represents the rate of testing 
and rate of asymptomatic people going for test that are detected as control 
parameter. At any time t, we consider a region with total population N. we 
divided whole population into four sub classes: Susceptible (S), Undetected 
infectious (U ), Recovered ( Removed) (R), Detected infectious (D) and Test- 
ing done (T ). A diagram is shown in Figure1 to study the efficacy of testing. 
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Figure 1: Flow diagram for a model system (2.1) to (2.5). 
 

 
dS 

= µ − βSU − µS + (1 − ψ)m, (2.1) 
dt 

dU 
= βSU − γU − θTU − µU + ψm, (2.2) 

dt 
dD 

= θTU − γD − µD, (2.3) 
dt 
dR 

= γU + γD − µR, (2.4) 
dt 
dT 

dt 
= φS − φ0(T − T0), (2.5) 

with the initial conditions S(0) > 0, U (0) ≥ 0, D(0) ≥ 0 , R(0) ≥ 0 and 
T (0) ≥ 0. 

Description of parameters is defined in Table(1). 

Here note that, 

S(t) + U (t) + D(t) + R(t) = N (t). (2.6) 

Adding equation (2.1) to (2.5), we have 
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Susceptible 

 
Boxline number of testing done 

Infected migrants rate 
Number of migrants 

 
Rate of asymptomatic people going for test 

Recovery rate of asymptomatic people 
Rate of testing 

Failure rate of testing 

 

 
ψ 
m 
β 
µ 
θ 
γ 
φ 

 

 

 
Table 1: Table of Description 

 

 

 

dS dU 
+ 

dt dt 
d 

dD dR 
+ + 

dt dt 
= µ − µ(S + U + D + R) + m 

or, (S + U + D + R) = µ − µ(S + U + D + R) + m. 
dt 

 
Using equation (2.6) in above equation, we get 

dT 
≤ µ − µN + m. (2.7) 

dt 

This shows that the total population limt→∞supN (t) ≤ 1. In the context of 
model described above, the assumption holds that all variable and param- 
eters associated with the model are non-negativity for every t ≥ 0. This 
assumption is significant, reflecting the nature of the system being modeled. 
In the positively invariant set, we investigate the above model on 

Ω = {(S, U, D, R, T ) ∈ R5 
φ 

: 0 ≤ S, U, D, R ≤ 1, 0 ≤ T ≤ }. (2.8) 
φ0 

This is the model’s region of attraction. 
Table 1 provides a description of the parameters used in the model system 
(Fig. 1). 
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3 Equilibrium analysis 

The term ”equilibrium point” refers to a state of a dynamical system when 
there is no change over time. So, if a system begins from an equilibrium point, 
its state will always remain in equilibrium. Finding a disease free equilib- 
rium point is our current objective. Then from equation (2.1) to (2.5), only 
pandemic equilibrium point Em(Sm, Um, Rm, Dm, Tm) exists. The values of 
Sm,  Um,  Rm,  Dm and Tm are given as 

Sm = 
µ + (1 − ψ)m

, (3.1) 
βUm + µ 

m γ m θUm φ  µ + (1 − ψ)m 
R =  [U 

µ 
+ 

γ + µ 
{T0 + 

φ 
( 

βUm + µ 
)}], (3.2) 

m θUm φ  µ + (1 − ψ)m 
D = 

γ + µ 
[T0 + 

φ 
( 

βUm + µ 
)], (3.3) 

Tm = T + 
φ 

{
µ + (1 − ψ)m 

} (3.4) 
φ0 βUm + µ 

Then the root of the quadratic equation (3.5) provides Um. 

A1(Um)2 + A2Um − A3 = 0. (3.5) 

where the coefficients of equation (3.5) are 

A1 = {φ0(γ + θT0) + φ0µ}β, 

A2 = (φθµ + φθm + φ0γµ + φ0θT0µ + Φ0µ2) − (φθψm + βφ0µ + βφ0m) 

A3 = ψmφ0µ. 

This shows that the uniqueness of positive equilibrium point Um exist if and 
only if 

q
A2 + 4A1A2 > A2 

4 Stability analysis 

The investigation of local stability at the equilibrium point of the system pro- 
vides insight into the effects of perturbations. Our system can be linearized 
with regard to the random equilibrium points Em(Sm, Um, Rm, Dm, Tm) in 
order to determine the epidemic equilibrium’s stability point and we are given 
the equivalent matrix called the Jacobian matrix by 
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JE = 

�
� 0 

 

 
Where entries of the matrix JE are given by 

 

b11 = −βU − µ, b12 = −βS, b15 = ψ, 
b21 = βU, b22 = βS − γ − θT − µ, b42 = γ, 
b32 = θT, b33 = −(γ + µ), b51 = φ, 
b43 = γ, b44 = −µ, b55 = −φ0. 

Proposition. For the fixed parameters of the model system (2.1) to (2.5) with 
initial condition the equilibrium point Em(Sm, Um, Dm, Rm, Tm) is locally 
asymptotically stable if (βU +2µ+γ+θT ) > βS with (b11−b22)2+4b12b21 < 0. 

Proof:- The Jacobian matrix of the model system (2.1) to (2.5) is given 
by JE defined as above. The eigenvalues, λ, of the Jacobian matrix JE is 
computed by the equation det(λI − JE) = 0; i.e., the eigenvalues are the 
solution of the characteristic polynomial 

(b33 − λ)(b44 − λ)(b55 − λ){b11b22 − b12b21 − (b11 + b22) + λ2} = 0. (4.1) 

Now, by solving above equation (4.1) the eigenvalues of the Jacobian matrix 
JE is given by 

 

1 
λ1 =  {(b11 

2 
1 

λ  =  {(b 

 

+ b22 
 

+ b 

) − 
√

(b11 

) + 
√

(b 

 

— b22 
 

— b 

)2 + 4b12 

)2 + 4b 

b21}, 

b } 

λ3 = b33 = −(γ + µ), 

λ4 = b44 = −µ, 

λ5 = b55 = −φ0. 

Where, b11 = −βU − µ, b12 = −βS, b21 = βU and b22 = βS − γ − θT − µ. 
As, b11 + b22 = −(βU + 2µ + γ + θT ) + βS Thus, if (βU + 2µ + γ + θT ) > βS 
with (b11 − b22)2 + 4b12b21 < 0 then all eigenvalues have negative real part. 
Therefore, the equilibrium point of the model system (2.1) to (2.5) is locally 
asymptotic stable. 

11 22 11 22 12 

�
b11 

b21 

� 

b12 

b22 

b32 

b42 

0 
0 

b33 

b43 

0 
0 
0 

b44 

0 
� 

0 
0 �

� 

0 � 

b51 0 0 0 b55 
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dt 

h i h i 

�
� 

δxj δxj 

µS 

 
4.1 Basic reproduction number 

The basic reproduction number is defined as a threshold digit that delivers a 
value of secondary infections caused by an infected individual class in total 
infection duration if every member of the community is susceptible. The 
next-generation matrix is a method that allows us to determine the basic 
reproduction number. The model is divided into two subparts, R1 and R2, 
and the system (2.1) to (2.5) with m = 0 has the following form:- 

X = R1 − R2. (4.2) 
�

βSU − θTU 
� 

 
Where R1 = �

�
� 

θTU 
0 
0 

−βSU + µ 

�
�
�
, 

 

 

 
R2 = 

(γ + µ)U 
(γ + µ)D 

� µR − γ(U + D) � 
�

�φ0(T − T0) − φS
�

� 

 

 
and X =

  
dU 

 
dD dR dT dS 
dt  dt  dt  dt 

In the case of disease free equilibrium point the infected compartment are 
U, D, R and T. 

Now, R̃ 1  = δ(R1)i & R̃2 = δ(R2)i for 1 ≤ i, j ≤ 4. 

�
βS − θT 0  0  −θU 

� 

Thus, R̃1 = �
� 

θT 0  0 θU 
0 0  0 0 
0 0  0 0 

�
�, 

�
γ + µ 0 0 0 

� 

R̃2 = �
� 

0 γ + µ 0 0 

−γ −γ µ 0 
. 

0 0 0 φ0 

 

Here R̃ 1  ≥ 0 and R̃ 2  is a matrix whose determinant is not equal to zero 
R̃ — 1 ≥ 0 and R̃ 1 R̃ — 1 as non negative matrix; R̃ 1 R̃ — 1 is the next generation 

2 2 2 

matrix. 

 
. 

� � 
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φ 

� 
φ0 

1 2 

now R—1 =    γ+µ  
2 �

� 
γ 

γµ+µ2 
γ 

γµ+µ2 
1 
µ 

R1R2 = 

� 

� 

 

 

 
 1  

γ+µ 0 0 0 
� 

 ̃ � 0  1  0 0 
 

0 0 0  1  
0 

 

In this case 

βS—θT 
γ+µ 

 

0  0  −θU 
� 

˜ ˜—1 

 θT  

� 0  0 θU 

0 0  0 0 
0 0  0 0 

Then the spectral eigen value about the equilibrium E(1, 0, 0, 0, T0) point 
of the matrix is 

λ = 
β − θT0 

. (4.3) 
(γ + µ) 

As a result, the basic reproduction number is provided by 

R  = 
β − θT0 

. (4.4) 
0 (γ + µ) 

Thus, by controlling the value of these parameters we can control spread of 
the disease. 

 

5 Developing an optimal control model 

By selecting appropriate control parameters, we may do this using optimal 
control theory. In the model system, we have selected two control parameters, 
namely (i) Rate of testing ( i.e., φ) (ii) Rate of asymptomatic people going 
for test ( i.e., θ). The parameters φ and θ are represented by Lebesgue 
measurable functions v1(t) and v2(t), respectively on a finite interval [0, tf ]. 
Now, the challenge is to reduce the total cost functional J as stated by 

 

J(v1, v2) = 
tf 

(AU (t) + 
0 

B
v2 + 

2 

C 
v2)dt (5.1) 

2 

� 
0 

∫ 

. �
� 

γ+µ φ0 . � 
� 
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Subject to 
 

dS 
= µ − βSU − µS + (1 − ψ)m, (5.2) 

dt 
dU 

dt 
= βSU − γU − v2(t)TU − µU + ψm, (5.3) 

dD 

dt 
= v2(t)TU − γD − µD, (5.4) 

dR 
= γU + γD − µR, (5.5) 

dt 
dT 

dt 
= v1S − φ0(T − T0), (5.6) 

with the initial conditions S(0) > 0, U (0) ≥ 0, D(0) ≥ 0 , R(0) ≥ 0 and 
T (0) ≥ 0. 
Here note that, 

S(t) + U (t) + D(t) + R(t) = N (t). (5.7) 

The positive constant A, B and C within the cost function serve as weight 
constants, influencing the integral components of the functional cost, J. Our 
objective is to find an optimal control pair (v∗, v∗) ∈ Θ that minimizes the 

1 2 

functional J, aiming to 

J(v∗, v∗) = min(v ,v )∈ΘJ(v1, v2) (5.8) 
1 2 1 2 

in which the control set is defined as 

Θ = {(v1, v2)| vi is measurable and 0 ≤ vi(t) ≤ 1 for t ∈ [0, tf ], i = 1, 2} 

is the needed set for the controls. 
To keep things simple, we can write v1(t) = v1 and v2(t) = v2 

 

5.1 Consistency and positivity of solutions 

In this section, we demonstrate the persistence and positive of the existing 
solutions for the considered system (5.2) to (5.6). 

Theorem 5.1.1 The system of equation (5.2) to (5.6) makes biological sense 
in the region 

 
Ω = {(S, U, D, R, T ) ∈ R5 

φ 
: 0 ≤ S, U, D, R ≤ 1, 0 ≤ T ≤ }. 

φ0 

It is attractive and positively invariant with regard to the system of equation 
(5.2) to (5.6). 
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Proof By combining the first four equations of the model system (5.2) to 
(5.6) mentioned before and taking 0 ≤ vi(t) ≤ 1 for i = 1, 2 
Thus, 

dT 
≤ (µ + m) − µT. 

dt 
The remainder of the proof is straightforward by using integration and limits. 

Theorem 5.1.2 Our model system’s (5.2) to (5.6) solutions are all posi- 
tive. 
Proof The theorem’s proof 5.1.2 is rather simple. 

 

 

5.2 Existence of optimal control 

The theorem establishes the existence of an optimal control state, as demon- 
strated in theorem 5.2.1 (by Fleming et al. 1975), in the following manner: 

Theorem 5.2.1 Consider the control challenge associated with model 
system (5.2) to (5.6) there exist ṽ = (v∗, v∗) ∈ Θ in such a way that 

1 2 

J(v∗, v∗) = min(v ,v )∈ΘJ(v1, v2) 
1 2 1 2 

Proof The following prerequisites must be met for the optimum control to 
exist: 

 

 
(i) The associated state variables and set of controls indicated by the sym- 

bol Ω are not empty. The solutions of model system (5.2) to (5.6) exists 
found in (Lukes 1982) Theorem 9.2.1. 
As a result, the set Ω is not empty. 

(ii) The set Θ is convex and closed. From definition, it is clear that Θ is 
closed. Given (θ1, θ2) ∈ Θ and t ∈ [0, 1] such that θ1 = (v11, v21) and 
θ2 = (v12, v22), the line tθ1+(1−t)θ2 = (tv11+(1−t)v12), tv21+(1−t)v22) 
belongs to Θ since each of its components is in between zero and one. 
Thus Θ is convex. 

(iii) The right hand side of the state model system (5.2) to (5.6) is bounded 
by a linear function in the state and control variable. System (5.2) to 
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(5.6) is linear with respect to v1 and v2. Beside its solution are ab- 
solutely continuous(Lukes 1982), which implies that they are bounded 
and statement (iii) is satisfied. 

(iv) The content of the objective function is concave over Θ. The specific 
expression for the integral component K of the objective function is 
provided by by 

K(U, v , v ) = AU (t) + 
B

v2 + 
C 

v2 
1 2 

2  1 2  2 

. 
It can be verify for any (θ1, θ2) ∈ Θ and t ∈ [0, 1], 

K(tθ1 + (1 − t)θ2) ≥ tK(θ1) + (1 − t)K(θ2) 

 
This shows that K is concave. 

(v) There exist constants q1, q2 > 0 and r > 1 such that the integrand K 
of the objective functional satisfied 

K(U, v1, v2) ≤ q1 + q2(|v1|2 + |v2|2)r/2. 

 
Since S is bounded [22], there exist a constant q1 > 0 in such a way 
that AU ≤ q1 and also assuming q2 = maxvi where i = 1, 2 we get 

K(U, v1, v2) ≤ q1 + q2(|v1|2 + |v2|2)r/2 

with r = 2. 
Hence, condition (v) is met, affirming that the optimal system possesses 
a unique solution for tf that’s adequately small [22]. 

 

5.3 Characterization of optimal control 

The Pontryagin’s Maximum Principle (Pontryagin et al. 1962) provides the 
fundamental requirements that an optimum solution must meet.This princi- 
ple turns equations (5.1)-(5.6) into a problem that characterizes the following 
Hamiltonian H in terms of control variable H(S, U, D, R, T, λ1, λ2, λ3, λ4, λ5) 
by minimizing it point wise.  H(S, U, D, R, T, λ1, λ2, λ3, λ4, λ5) = AU (t) + 
B v2 + C v2 + λ1{µ − βSU − µS +(1 − ψ)m} + λ2{βSU − γU − v2(t)TU − µU + 
2  1 2  2 

ψm} + λ3{v2(t)TU − γD − µD} + λ4{γU + γD − µR} + λ5{v1S − φ0(T − T0)} 
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1 2 ∂v 

 

 
where λi, i = 1, 2, 3, 4 are co-state functions, also known as adjoint functions 
which can be defined through solving the system of differential equations: 

 

r ∂H λ = − = −{λ (−βU − µ) + λ βU + λ v }, 
1 ∂S 1 2 5 1 

r ∂H λ = − = −{A + λ (−βU ) + λ (βS − γ − v (t)T − µ) + λ v (t)T + λ γ}, 
2 ∂U 1 2 2 3 2 4 

r ∂H λ = − = −{λ (−γ − µ) + λ γ}, 
 

3 ∂D 
r ∂H 
4 = − 

∂R 

3 4 

 

= −{λ4(−µ)}, 

r ∂H λ = − = −{−λ v (t)U + λ v (t)U − λ φ }, 
 

5 ∂T 2 2 3 2 5  0 

meeting the condition λi(tf ) = 0 for i = 1, 2, 3, 4 satisfies the transversality 
requirement. These condition are due to independent of state at the final 
time of the objective functional. 
The Hamiltonian is minimized concerning v1 and v2 at the optimal value v∗ 
and v∗, indicating the derivative of the H concerning v1 and v2 at v∗ and v∗, 

2 1 2 

must be zero. Since 

H = 
B

v2 + 
C 

v2 + (λ − λ )v (t)TU + λ v S (5.9) 
 

  

2  1 2  2 3 2 2 5 1 

Now, differentiating equation (5.9) partially with respect to v1 and v2 respec- 
tively, we get 

 

 
and 

∂H 
 

 

∂v1 

∂H 

= v1B + λ5S (5.10) 

= v2C + (λ3 − λ2)TU (5.11) 
∂v2 

The optimal control without restriction v∗ and v∗ satisfied ∂H 
1 

= 0 and 
∂H = 0 at v1 = v∗ and v2 = v∗ respectively due to Pontryagin’s Maximum 
∂v2 1 2 

Principle (PMP). 
Thus, we have v∗ = −λ5S and v∗ = (λ2—λ3)TU 

1 B 2 C 

Now, making use of the control’s bound, the ideal control is defined as 

v∗ = max{0, min(1, −
λ5S 

)} (5.12) 
1 B 

and 
v∗ = max{0, min(1, 

(λ2 − λ3)TU 
)} (5.13) 

2 C 

λ 
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As a result, we have the following theorem. 

Theorem 7.1 Equation (5.12) and (5.13) describes the optimal control v∗ 
and v∗ that optimizing the model system (6)to maximizes the objective func- 
tion (5.1). 

 
 

We achieve the uniqueness of the optimum control for small tf due to the 
a priori boundedness of the state and adjoint functions and the resulting 
Lipschitz structure of the ordinary differential equations. 

 

6 Numerical Simulation 

We demonstrate numerical simulation of the dynamical systems (2.1) to (2.5) 
in this section to support the findings of theory. We have selected the fol- 
lowing as the default values for this purpose: 
β = 0.9, µ = 0.2, θ = 0.05, T0 = 4, γ = 0.25, m = 2500, φ = 0.6, 
ψ = 0.5, φ0 = 0.1. 
It is possible to verify that the stability conditions and the presence of an 

 

 
Figure 2: Variation of susceptible population without testing. 

 
endemic equilibrium E2 are fulfilled. With regard to E2, the point of equi- 
librium values have been determined as: 
S∗ = 0.4975313, U ∗ = 2791.785, D∗ = 2166.793, R∗ = 2231.36, 

T ∗ = 6.985188. 
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Figure 3: Variation of susceptible population with testing. 

 
 
 
 
 
 

 

Figure 4: Optimal control profile v1 and v2 over time, considering A = 3, B = 
6, and C = 3. 
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Then, using an iterative approach and the Runga-Kutta fourth order pro- 

cedure from Lenhart et al.(2007), we deal with the optimality system through 
numerical calculations while making some preliminary assumptions about 
the control variables regarding the same set of values for the parameters as 
above. Making use of the Runga-Kutta fourth order iterative approach, the 
system of state variables is first solved forward in time, and then the system 
of adjoint variables is solved backward in time. The cost for such controls is 
modified after every iteration. As long as the intended convergence criteria 
is not met, we will have continue the evolution. We start by setting the ini- 

 

 

 

 
Figure 5: Variation of cost function with respect to time with control v1 and 
v2 individually. 

 
tial conditions as follows: S(0) = 0.8, U(0) = 0.1, D(0) = 0.05, R(0) = 0.1, 
T(0)= 6.5. The maximum values for the parameters of control are restricted 
to u1max = 1 and u2max = 1. To ensure the enforcement of control strategies, 
the duration of the period is reduced to 100 days. 
In the analysis, we observe the influence of testing on susceptible individu- 
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Figure 6: Variation of cost function with respect to time with control v1 and 
v2. 

 
als, as depicted in Figure 2, 3. It was noted that the number of susceptible 
individuals increases when there is no COVID testing conducted, whereas in 
its presence, the count of susceptible individuals decreases. 

We chose to set the weight factors associated with susceptibility and the 
effectiveness of testing to be equal, specifically A = 3, B = 6, and C = 3. 
The impact of these weight constants on the pattern of optimal controls is 
depicted in Figure 4. These figures distinctly demonstrate the crucial role 
played by the optimal control profile in guiding the optimal control strategy. 
Furthermore, we’ve analyzed the breakdown of cost formation to determine 
more effective wellness control strategies in Figure 5, 6. From these figures, 
it’s evident that the cost is notably high in the absence of any control mea- 
sures. Additionally, it’s observed that with a single control measure, the 
cost differs only slightly compared to the scenario where no control measures 
are used. However, it’s notable that when both control measures are em- 
ployed, the optimal cost significantly decreases compared to the cases where 
either a single or no control measure is used. Hence, it suggests that employ- 
ing both control strategies is far more effective than utilizing only a single 
control measure on the susceptible population, consequently reducing their 
numbers. 
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7 Conclusions 

In this study, we have constructed a mathematical model to show the effi- 
cacy of testing by using two control parameters: the rate of testing and the 
rate at which asymptomatic people going for test to control the epidemic. 
Our findings reveal the presence of two equilibrium points: one represent- 
ing the disease-free equilibrium E1(1, 0, 0, 0, T0), and the other representing 
the endemic equilibrium point E2(Sm, Um, Dm, Rm, Tm) for R0 > 1. The 
disease-free equilibrium point is locally asymptotically stable when R0 < 1. 
Additionally, our analysis indicates that a pandemic equilibrium point is both 
locally and globally stable under specific conditions. Numerical simulations 
have been conducted to verify these analytical findings. It has been observed 
that in the absence and presence of rate of testing, the population of suscep- 
tible increases and decreases, respectively. 
Our findings strongly indicate that testing plays a significant role in reduc- 
ing the susceptible population and subsequently curbing the spread of dis- 
eases. This comprehensive investigation highlights the effectiveness of testing 
strategies coupled with appropriate treatments in eradicating susceptibility 
to diseases within a population. Implementing testing protocols offers the 
potential for disease monitoring and prevention, reducing complications, and 
enhancing overall quality of life. However, given the considerable costs asso- 
ciated with testing programs, we have sought an optimal solution using op- 
timal control theory. This theory enables us to identify the optimal rates for 
implementing and disseminating testing actions. We’ve established the pres- 
ence of a controlled system modality and employed Pontryagin?s Maximum 
Principle to derive optimal control characteristics, which are corroborated by 
numerical examples. Therefore, the optimal solution provides a cost-effective 
approach to controlling epidemics by employing efficacy testing strategies on 
the susceptible population, consequently aiding in disease control. 
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