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Novel solution of nonlinear time fractional Rosenau-Hyman equation

The Rosenau-Hyman equation models the nonlinear dispersion in pattern
formation in liquid droplets. In this article, the nonlinear time-fractional Rosenau-
Hyman equation is analysed using a dependable technique that combines natural
transformation and decomposition methods. The fractional derivative is taken
into consideration with a well-known singular kernel derivative known as the
Caputo derivative, in addition to two nonsingular kernel derivatives known as the
Atangana-Baleanu-Caputo derivative and the Caputo-Fabrizio derivative. The
dominant framework accurately represents the way in which the outcomes
behave when represented by different fractional orders. The convergence analysis
was conducted to illustrate the uniqueness of the solutions. In order to verify the
efficacy of the techniques being evaluated, numerical simulations are provided. It
can be concluded, on the basis of the study’s results, that the methodology for
investigating fractional differential equations is both effective and reliable. The
obtained results are compared numerically and graphically to the exact solutions.
The proposed approach would be highly effective for solving a variety of

fractional partial differential equations.

Keywords: Atangana-Baleanu-Caputo derivative; Caputo derivative; Caputo-
Fabrizio derivative; Natural transform decomposition method; Time fractional

Rosenau-Hyman equation

1.1 Introduction

The theory of fractional derivatives and integral operators has driven an excellent
interest among scientists for its various applications and significance in economics,
biology, mathematics, finance, and physics. Through the use of fractional calculus,
mathematical models, coupled linear and nonlinear equations with initial and boundary
conditions, used in a variety of fields and technologies, can be expanded upon and
described more broadly [1, 2, 3, 4, 5, 6, 7, 8]. In the last few decades, several fractional
derivative formulations have appeared. Liouville and Riemann created the formulation
for the fractional derivative at the end of the nineteenth century. However, Leibniz and

L’Hospital had already addressed the non-integer derivative and integral in 1695. The
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Riemann-Liouville (R-L) derivative concept was developed by Riemann in the year
1876. Since then, several branches of scientific and technological sectors have shown
how useful these fractional derivatives and integrals of this R-L type are. A Michele
Caputo (C) derivative is a special type of fractional derivative that he suggested for a R-
L fractional integral around the turn of the 20th century. Atangana and Baleanu
effectively applied the newly developed non-singular fractional operator from Caputo
and Fabrizio to solve a range of difficult phenomena, including biological ones.
Fractional calculus was established on formal foundations by several notable
mathematicians, including Euler, Liouville, Abel, Grunwald, Heaviside, Riemann,
Lagrange, and Fourier. Recently, many research scholars have focused on various
analytical and semi-analytical techniques. For instance, these methods include the
homotopy perturbation transform method [9], the reduced differential transform method
[10], the Laplace transform method and variational iteration method [11], the g-
homotopy analysis transform method [12], the Laplace Adomian decomposition method
[13], the reduced power series method [14], and the homotopy analysis transform
method [15].

Gilson and Pickering introduced the Gilson-Pickering equation in 1995. The
nonlinear third order partial differential equation (PDE) of the type can be modelled by

the Gilson-Pickering equation of the form [16].

U, — Py, +2yu, —uuy, — Puu, —Ouu, = O’(l)

where P.7,B,0 are the constants. Three possible exceptional cases exist for (1) in the
above equation. In equation (1), when P =Ly =05,8=-160=3pecomes the

Fornberg—Whitham equation. In equation (1), when P =LY =0,8=-3,0 =2 becomes

the Fuchs Steiner—Fokas—Camassa— Holm equation. In the above equation (1), when
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p=0,y=0,8=1,0=3 pecomes the Rosenau-Hyman equation (RHE). Consider the
time-fractional Rosenau-Hyman equation (TFRHE) of the form:
Dfu=uu,, +uu, +3uu., )

with the initial condition

u(¢,0)= —%ccos2 (%j.@)

Where € is a constant and * is the order of the fractional derivatives (0 <4 <1)_ This
equation bears the names of Philip Rosenau and James M. Hyman, who wrote the 1993
Compactions inquiry [17]. The RHE is a two-parameter nonlinear PDE modelled to
study the nonlinear behavior of dispersion in an organized pattern formation in liquid
drops. It has numerous applications in many fields of science and technology. Due to its
tremendous applications in various fields, it has attracted the attention of numerous
researchers. Recently, a number of studies have investigated the TFRHE using
numerical and approximation techniques, including the g-homotopy analysis method
[18], the reduced differential transform method (RDTM) and g-homotopy analysis
transform method [19], and the variational iteration method (VIM) and homotopy
perturbation method (HPM) [20].

To the best of our knowledge, no attempt has been made to solve the time-
fractional Rosenau-Hyman equation using the natural transform decomposition method
(NTDM). The main aim of this article is to study the approximate solutions of nonlinear
TFRHE using the NTDM by considering the fractional derivative in the C, CF, and
ABC. The proposed method uses a unique integral transform, namely the natural
transform (NT), in combination with the Adomain decomposition approach. The novel
method always yields an exact or approximate solution in the form of a fast

convergence series. The proposed methodology effectively addresses fractional
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nonlinear equations, obviating the requirement of a Lagrange multiplier as seen in the
variational iteration method or Adomian polynomials as employed in the Adomian
decomposition method. These techniques avoid the occurrence of round-off errors by
eliminating the need for linearization, specified assumptions, perturbation, or
discretization. Recently, numerous scholars have investigated the various physical
problems using NTDM, such as the Kawahara and modified Kawahara equations [21],
Klein-Gordon equation [22], Burgers-Huxley equation [23], Swift-Hohenberg equation
[24], and coupled fractional Ramani equations [25].

The article is organized in the following manner: The fundamental definitions
used in this study are presented in Section 1.2. Section 1.3 provides the NTDM solution
process for the equation under consideration. In Section 1.4, the uniqueness and
convergence results of the suggested technique are established. The approximate
solutions of the TFRHE are given in Section 1.5. In Section 1.6, the results and
discussion of the current study are presented. The conclusions of this study are

presented in Section 1.7.

1.2 Basic Definitions

In this section, we have presented definitions for C, CF, and ABC derivatives and the
natural transform of these derivatives.

1.2.1 Definition [26]

The C derivative the function ” (T) €C%,9 €N of order H is as follows

D"h(f)=ﬁj<r—§)q“hq@dé,r >0,q-1<pusgq. "

1.2.2 Definition [27]

The fractional derivative CF of the function #(7) is defined as
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FDh(r) = IL | hl(g)exp(@jd@
—H — U (5)

1.2.3 Definition [28]

The definition of fractional ABC derivative of the function (%) is defined as

z _ _ H
¢ prep(ry = 1A [H©E, [Mj AE0< <l
I=uyg I-u (6)
Where £ is the Mittag-Leffler function.

1.2.4 Definition [29]

NT of the function #(7) is defined as

N*Th(z)] = R(s,u) = iTe(jf)h(r)dT,u,s e (0,00). o

1.2.5 Definition [30]

NT of C derivative is defined as

N+[€D:‘u<r>]=(fj (NWu(r)]—lu(O)j.
v s (8)
1.2.6 Definition [31]

The definition of the NT for CF derivative is

I S
S(u,s,v)

f(u,s,v>=1—u+u(§j.

NT%Dfu(r)] = (N+[M(T)]—§u(0)j,

where

1.2.7 Definition [30]

NT of ABC derivative is defined as
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. 1 . 1

<N[A%I¢m¢n=——————[N[u@ﬂ——u«»)

g(u,s,v) s (10)

(vjy Mlu]
l—p+p|—
S
g(u,s,v)= , o _

where M[u] , and is a normalization function.
1.3 Basic Idea of NTDM

In this section, we present the proposed method for (2) along with the initial condition
(3) utilizing singular and nonsingular kernel derivatives.
NTDMc:In view of equation (8) and initial condition (3), we obtain

, zccosz(ij =N+[uum+uu§+3ugug:|.
S +
(—j N, t)+————=
v s

(11)
Taking the inverse NT on equation (11), we have
3ccos2(jj .
ul,t)=N"'"-— 724 Y\ N*Tuu,., +uu, +3uu )
€0 (2 W o o 43,
(12)

The decomposition of the nonlinear terms is as follows:

g = Ay,

k=0
uugzsz,

k=0
uu., =y C,
M ; k (13)

where 4i, B and Ci are the Adomian polynomials [32].

u(¢,7) have the infinite series solution of the form

wan=§wwnhm)

Making replacements of equations (13) and (14) into equation (12), we have
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. ~ccos (Cj o

D (g, r)=-N" B AS 220,

k=0 N N* k:Owj:Ok o
+ZOZ(;uj(uk—j)§ +3;Z(;(uk7j)g ()
L k=0 = =0 j=

(15)

From equation (15), we have
8 ¢ cos (Cj
3 4

Uy (¢,1)=-N" — |

u
a2y
“u(f,1)=N ll:(;J N[”ouogﬁ gty + 3oty ]}’

“

c _ v +
u,(§,7)= l:(;} N [uoumg F Uy UGl U 3 Uy U U, )]

uk+1(4’ T)= |: N+ Z” (1. ,)ggg"'zu (1. ,)g+32(”k ,)g(”k ,)gg:| k=0.

(16)
Making replacements of equation (16) into equation (14), we obtain the series solution

as

U 7)= Uy, )+ “u (1) + (G D+ (1)

NTDM¢;: In view of equation (9) and the initial condition (3), we obtain

8 ¢ cos? (gj =N [””4:: g +3u Uy, ]

LIV i— 4 —

f(u,s,v)
(18)

Taking inverse NT on equation (18), we have
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8 ¢ cos? (éj
4] 3 4 .
u(l,7)=N + f(u,s,v)N [uu@g +uu, +3ugu§§] .
s
(19)

Now, by substituting equations (13) and (14) into equation (19) to obtain

S (ps5,v) |

re(g)], | Tok
x u.\u, .
Zuk(C,T)z_Nfl u +N71 == ]( kfj)é’éf
k=0 § N ok o k
+D 2w, ) 43D % () ()
L k=0 j=0 k=0 j=0 ]

(20)

From equation (20), we have

8 ccos’ (gj
N 3 4

N

2

CFuO(gaT) ==

“Cu(§or) = N7 (s N [t + gty +3ugt. |,

CF -1
u,(¢,7)=N [f(:uasa V)N” I:u0u1§§§ T Uy UM +UU F 3(“04?”144 T Uy, )]_

-

e
WV
o

k k k
CFuk+1 ¢,7r)= N |:f(,u,S,V)N+ |:Zuj (uk—j)ggg + Zuj (uk—j)g +3Z(uk—j )g“ (uk—.f)§§i|
=0 =0 =0
21)
Making replacements of equation (21) into equation (14), we obtain the series solution
as
FuC.1) = Cuy (G )+ L (€0 + Cun () + (22
NTDM 4¢: In view of equation (10) and the initial conditions (3), we obtain
8 ¢ cos?
1

— NG+
g(u,s,v) s

(CJ =N" [uum +uu, +3u4ug].

(23)

Taking the inverse NT on equation (23), we have
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+g(u,s,v)N* [uuggg +uu, +3ugu§g] .
(24)

Now, by substituting equations (13) and (14) into equation (24) to obtain

[ g(u,s,v)
§ccos2 (gj i k
3 u.(u, .
Zuk(é’,r):—]\l’l % +N! N == ]( k—j)§§§
k=0 e »
+zzuj (W y)e + 32 z(”kfj ) (W)
L k=0 j=0 =0 =0 |

(25)

From equation (25), we have

b

§C‘COS2 (gj
ABCuO(g’T):_N—l 3 4

N

ABC”l (¢, 1)=N" |:g(/'t7 saV)N[”ouoggg + gy, + 3oty ﬂ )

ABC -
u,(¢,7)=N [g(:uasa VN” [”oulggg T Ul UG T U+ 3(“0;”1¢g +U Uy, )]_

“

=
WV
o

ABCuk+1 (é/,T) = N_l [g(:uasav)NJr |:Zuj (uk—j )ggg + Zu; (uk—j )g + 32 (uk—j )§ (uk—j )§§:|
(26)

Making replacements of equation (26) into equation (14), we obtain the series solution

as
UG, Ty = U () + U () + () (27
1.4 Convergence Analysis

In this section, we studied the uniqueness and convergence [30].

NTDM,, o
0<(6,+6,)

1.4.1 Theorem The solution is unique when F(u+1)

1.4.2 Theorem The NTDM ¢ solution is unique when 0 < (6, +6,)(1—p+ ur) <1.
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143 Theorem The NTDM solution is unique

.L-H
0<@0 +0,)| 1—u+ <1
( 1 2){ H ﬂl‘(u+l)j

1.4.4 Theorem The VDM ¢ solution is convergent.

1.4.5 Theorem VDM ¢ solution is convergent.

1.4.6 Theorem NTDM ¢ solution is convergent.

1.5 Numerical Example of TFRHE

when

In this section, we have presented the approximate solutions of TFRHE using the

NTDM with the help of singular and non-singular kernel derivatives, namely, C, CF,

and ABC.

NTDM . we get the solutions of NTDM ¢ g,

“u,(&,7)= —8—ccos2 (%),

u(é’r)——z—s (gj 28

3 T(u+1)’
_ s[E) T
(=3 ( jr(z;m)’
_a ()
(e = ( )F(3ﬂ+1)’

we can follow the above NTDMC procedure and get the approximate solution as

cu(é’ T):—8_CCOSZ (é)—zsin(éji—kicos(éji_yi
’ 3 4) 3 2 )T(u+1) 3 2 )TQu+l) 6

NTDM ¢z . we get the solutions of NTDM ¢y g,

PAGE NO: 642

¢

3
T.U

TGu+l)



KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 24 ISSUE 12 2024

Cuy (&)= ——cos (%j

“Cu (¢, r)———sm(gj 1+,ur—u],

2

['(2)

uzwr)——cos {wr(l—u)w +(1- u)ﬂ,

Tus(g T)——Sm { —u) +3u(-p)’T+3u7(1- “)ﬁ ﬂ3lf(4)}

we can follow the above NTDM ¢ procedure and get the approximate solution as

Ful,r) :—%cos2 (%j—zésin(%j[l+yr —u]+§cos(%j{2‘ur(l 1)+ 11 7?2 +(1_ﬂ)2}

4

c g 3 - - ’ s
+Zsm( j{(l 1’ +3u(-pyt+3u°( u)l"(?,) K F(‘D}_

NTDM ;5c . We get the solutions of NTDM ,pc s,

Puy (& 1) = ——cos {C:j

Bcul(gar) - 4

-
j{M (] Mlu] F(u+1)}
uz(é T)——COS ( 'uj 2.“(1 u) +( L j L2n |
M M[,U] I'(u+1) Mlu]) TQu+1)

ug(C: T)——sm ( J 3/1(1 B 3“ ) N +[ A j a )
Mlp M[uT F(u+l) M[ul TQu+1) (M[u]) TGu+1)

we can follow the above VDM procedure and get the approximate solution as
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ABCu(é’,r)=—8—ccosz(£j—2—czsin(£j{1_’u+ H i }
3 4) 3 2)|M[p] M[u]T(u+1)
+C_3cos(ij(1—ﬂf+2ﬂ(l—ﬂ) " J{ u jz 7

3 2 )|\ M[u] M[ul* T(u+1) (M[u]) TQu+1)

u

+isin(£j(l_’uj3+3'u(l_”)2 4 +3ﬂ2(1—,u) T +E u I 3 "
6 \2)|\M[u]) " M T(u+D)  Mul TQu+D (Mu]) TGu+D)

For # =1 the NTDM solution approaches the exact solution

—cT | (§ —cT)|< 2.

u(g’f):_%cosz(g 4 j,where

Table 1.1 Comparison of the absolute errors of TFRHE with # =1 and ¢=1.

{ T NIDM. NITDM, NIDM ,. RDTM[33

]

n 0. 0.0001 0.0001 0.0001 0.0000
! 2 0.0006 0.0006 0.0006 0.0006
0. 0.0019 0.0019 0.0019 0.0019
4
0.
6
T 0. 0.0002 0.0002 0.0002 0.0001
2

2 0.0012  0.0012 0.0012 0.0011

0. 0.0039 0.0039 0.0039 0.0039

3z 0. 0.0002 0.0002 0.0002 0.0002
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0.0016 0.0016 0.0016 0.0016

0.0053 0.0053 0.0053 0.0054

0.0002  0.0002 0.0002 0.0003
0.0018 0.0018 0.0018 0.0018

0.0060 0.0060 0.0060 0.0059

Table 1.2 The approximate solution of TFRHE when # =1 and ¢=1.

§ T NIDM. NTDM, NTDM ,. VIM[20 HPM[20

] ]

7z 0. -2.6100 -2.6100 -2.6100 -2.6099  -2.6099
) 2 -2.6609 -2.6609 -2.6609 -2.6609  -2.6609
0. -2.6590 -2.6590 -2.6590 -2.6590  -2.6589
6
l.
0
0. -23656 -2.3656 -2.3656 -2.3655  -2.3655
2

2 -25127  -2.5127 -2.5127 -2.5126  -2.5126

0. -2.6128 -2.6128 -2.6128 -2.6127  -2.6127
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-1.9640

-2.1848

-2.3717

-1.4664

-1.7274

-1.9726

-1.9640

-2.1848

-2.3717

-1.4664

-1.7274

-1.9726

-1.9640 -0.4893

-2.1848 -0.7112

-2.3717 -0.9579

-1.4664 -1.4664

-1.7274 -1.7273

-1.9726 -1.9725

-0.4893

-0.7112

-0.9579

-1.4664

-1.7273

-1.9725

PAGE NO: 646



KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 24 ISSUE 12 2024

Table 1.3 Absolute error of the TFRHE when #=1 and ¢=0.1,

§ T NIDM, NTDM,. ~ NTDM,.  Absolute
CIror

0. 0. 1.0930e—08 1.0930e—08 1.0930e—08 1.391e—06

3 3 3.8072e—07 3.8072¢—07 3.8072¢—07 3.610e—06

0. 1. 14748e—06 1.4748¢—06 1.4748¢—06 5.820¢— 06

30 3.5710e—08 3.5710e—08 3.5710c—08 8.925¢—11

0. 1. 130lle-06 1.301le-06 1.3011e—06 8.925¢— 11

3 6 52534e—06 5.2534e—06 5.2534c—06 8925¢—11

. 0. 53605e—08 53605¢—08 5.3605¢—08 7.248¢—07

0 3  1.9682e-06 1.9682¢-06 1.9682¢—06 2.075¢— 05

. 1. 80008c—  80008c—  8.0008¢—  4.016¢— 05

0 0 06 06 06

Lol

0 6

.o

6 3

Lol

6 0

Lo

6 6

Table 1.4 Relative error of the TFRHE when #=1 and ¢=0.1,
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Relative

€rror

4.1173e - 08

1.4313e - 06

5.5372e - 06

1.4211e-07

5.1347e - 06

2.0595e - 05

2.3547e—-07

8.5244e - 06

3.4254¢ —

05

4.1173e - 08

1.4313e - 06

5.5372e - 06

1.4211e—-07

5.1347e - 06

2.0595¢ - 05

2.3547e-07

8.5244e - 06

3.4254e —

05

4.1173e - 08

1.4313e - 06

5.5372e - 06

1.4211e-07

5.1347e - 06

2.0595e - 05

2.3547e—-07

8.5244e - 06

3.4254¢ —

05

5.245¢ - 06

1.358¢ - 05

2.186e - 05

3.550e - 10

3.522¢-10

3.497e—-10

3.227e - 06

9.110e - 05

1.740e — 04

Table 1.5Approximate solution of TFRHE with different values of and ¢ = 1.

u=0.25 1 =0.50

NTDM_. NTDM, NTDM ,,. NTDM, NTDM, NTDM .

-2.4971 -2.4971 - -2.4529 -2.4529
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2.2761 -2.5100 -2.5127 2.2761 -2.5045 -2.5175

- -2.5192  -2.5130 - -2.5413 -2.5270

2.5254 -2.5247 -2.5127 2.5344 -2.5634 -2.5274

2.5303 2.5724

2.5260 2.5741

- -2.5833 -2.5833 - -2.6157 -2.6157

2.5652 -2.5550 -2.5200 2.5652 -2.5929 -2.5562

- -2.5220 -2.5045 - -2.5508 -2.5089

2.5561 -2.4841 -2.4936 2.6148 -2.4895 -2.4637

2.4991 2.5451

2.4511 2.4558

- -2.2338 -2.2338 - -2.1196 -2.1196

1.8436 -2.2858 -2.3259 1.8436 -2.2378 -2.2985

- -2.3359 -2.3419 - -2.3479 -2.3633

2.3132 -2.3840 -2.3523 2.2712 -2.4500 -2.4093

2.3792 2.4110

2.4193 2.5034

PAGE NO: 649



KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 24 ISSUE 12 2024

n 0. - -1.8333 -1.8333 - -1.6667 -1.6667

0 1.3333 -1.9167 -1.9880 1.3333 -1.8333 -1.9326

0. - -2.0000 -2.0172 - -2.0000 -2.0428

5 19518 -2.0833 -2.0368 1.8653 -2.1667 -2.1273

1. - ]
0 2.0688 2.0856
1. - -

5 2.1473 2.2547

Table 1.6 Approximate solution of TFRHE with different values of and ¢ = 1.

u=0.75 u=1

NTDM_. NTDM, NTDM ,,. NTDM, NTDM, NTDM .

0. -2.2761 -2.3793 - -2.2761 -2.2761 -2.2761

0 -2.5184 -2.4953 23793 -2.4824 -2.4824 -2.4824

0. -2.6118 -2.5781 - -2.6297 -2.6297 -2.6297

5 -2.6456 -2.6279 2.5156 -2.7181 -2.7181 -2.7181

1. -

0 2.5680

1. -

5 2.5871

0. -2.5652 -2.6097 - -2.5652  -2.5652 -2.5652
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-2.6483

-2.6111

-2.5158

-1.8436

-2.2081

-2.4178

-2.5756

-1.3333

-1.7646

-2.0587

-2.3165

-2.6260

-2.5989

-2.5286

-1.9896

-2.1877

-2.3678

-2.5300

-1.5000

-1.7500

-2.0000

-2.2500

2.6097 -2.6542

- -2.6663

2.6127 -2.6014
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Figure 1.4 Approximate solution of TFRHE at 7 for different values of 4.
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Figure 1.5 Phase plot of “u(C,7)," u(¢, 1), u(¢,7) at various values of " .
1.6 Results and Discussion
In this results and discussion part, we illustrate the accuracy and efficiency of the

proposed technique. Table 1 shows the comparison of the absolute error of the proposed
method with RDTM for #=1 and ¢=1 at various values &.7. Table 2 shows the
comparison of the approximate solutions of this study with VIM and HPM for # =1
and ¢=1 at various values of .7 . Table 3 and Table 4 show the comparison of the
presented method’s absolute error and relative error, respectively, for #=1 and ¢=0.1
at various values of ¢,7 . Table 5 and Table 6 shows the NTDM solution for the various

values of -7 and* . From the tables, it can be observed that the approximate solutions
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of the current study show good agreement with those methods existing in the literature.

Figures 1-4 demonstrate the wave behavior of the TFRHE using two-dimensional

graphical representations with three various fractional operators for various H.&
values. Figure 5 displays the phase plot of the approximate solutions for various
fractional order values. From the figures, it can be concluded that all three derivate
solutions behave the same. From the tables and figures, it can be observed that when the
fraction order M approaches 1, the approximate solutions converge to the exact
solutions. We conclude that our approach has very accurate approximations to the
precise solution of the relevant equation based on the outcomes of the TFRHE.

1.7 Conclusions

This article utilizes the natural transform decomposition method to investigate the time-
fractional Rosenau-Hyman equation. This equation serves as a mathematical model for
the nonlinear dispersion observed in the formation of patterns in liquid droplets. The
Caputo, CF, and ABC approaches are utilized to analyze the fractional derivative. The

results show that the analytical solutions obtained by employing the NTDM method are

pretty close to the exact solutions. The tables and graphs show that when 4 =1 the
approximate solution of the differential equation approaches the exact solution. This
study demonstrates the validity and effectiveness of the implemented method by
conducting a comparative analysis of the results obtained and those reported in the
existing literature such as RDTM [23], VIM [32] and HPM [32]. Therefore, the
suggested methodology for obtaining analytical solutions to nonlinear problems is
remarkably reliable and effective. The proposed methodology exhibits
straightforwardness in its application to study non-linear time fractional partial
differential equations. From the outcomes of this study, we can conclude that this

strategy has a faster rate of convergence than the other methods. And also, the results
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demonstrate the procedure’s simplicity and usefulness. The proposed method can be
used to solve fractional differential equations in various fields of science and
engineering.
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