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Abstract: The effects of initial stress and angular rotations are investigated on Rayleigh type 

surface wave propagation in an orthotropic elastic solid in its gravity field. Employing the method 

of plane harmonic wave solution, the governing equations are solved to derive the dispersion 

relation of Rayleigh wave propagation with using impedance boundary conditions. The effect of 

initial stress and rotation are shown graphically on Rayleigh wave velocity for a particular solid.
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1 INTRODUCTION

Many authors focused their attention on the study of surface waves at half-spaces and 

interfaces of different elastic solids. The information obtained from the behavior of 

surface wave propagation is relevant to geophysicists and seismologists to locate the 

earthquakes. Such type of information is very essential to calculate earthquake energy 

and the mechanism of global tectonics.

Lord Rayleigh [1] prescribed the waves in the year 1885 are known as Rayleigh 
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waves.  These are surface type of waves and they having two types of motion named as 

‘ longitudinal motion’ and ‘ transverse motion’. Rayleigh waves are creating an 

elliptic motion. Rayleigh waves are destructive type of elastic waves and travel with 

low velocity. The wave propagation studies in different composite media are very 

essential in the behavior of earth’s interior. The ‘stress’ that occurs in a body under 

the absence of external body forces is called “initial stress”. The initial stress in the 

media caused by physical considerations like cold working, the gradual creep process 

and gravity changes. Also the surface of earth is an elastic medium that is subjected 

to significant initial stresses. Many science and technology branches extensively 

use surface wave problems in an orthotropic elastic solid. In the second half of 20th 

century, many investigations in surface wave propagations had been started on 

development of polymer science, plastic industry, geology and engineering sciences. 

Theoretical study with applications on surface wave propagation has become very 

important task for mechanics of solid.

By assuming traction free boundary conditions i.e., stress vanished surfaces, the 

Rayleigh type surface wave problems are solved. In geophysics or seismology problems, 

another type of boundary conditions is considered. Electromagnetism and acoustic 

problems are commonly solved by using impedance boundary conditions. The linear 

combination of unknown function and their derivative are the impedance boundary 

conditions.

Mandeep Singh et al. [2] studied the Rayleigh wave propagation problem on 

orthotropic elastic solids with two temperatures in context of thermo elasticity.  The 

effect of gravity on Rayleigh waves was investigated by Biot [ 3 ] .  Nahed et al.  

[ 4 ]  s t u d i e d  the effect of rotation on non-homogeneous infinite cylinder of orthotropic 

material. The effect of gravity on surface and Rayleigh type surface waves are studied by 

many authors Ali Mubaraki et al. [5], Aftab Khan et al. [6], Rajneesh Kakar , Shikha 
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Kakar , Kanwaljeet Kaur and Kishan Chand Gupta [7].  Narottam Maity et al. [8] 

investigated the effect of gravity and surface stress on Rayleigh wave propagation in 

Fiber-Reinforced Half Space. In very recent, rotation effect on Rayleigh type waves in 

a micropolar elastic medium with stretch in its gravity field was studied by Somaiah [9].

Tiersten [10] discussed the impedance boundary conditions in wave propagation 

studies. The secular equations of Rayleigh waves are derived by Malischewsky [11] by 

modifying Tiersten’s conditions in terms of displacements and stresses. Duran, Godoy 

and Nedelac [12], Vinh and Hue [13] and Singh [14] der ived the secular equations of 

Rayleigh waves under impedance boundary conditions. 

Many researchers discussed separately the effects of angular rotation and initial 

stress on Rayleigh surface waves with existing boundary conditions. But in this article, 

we discussed the effects of rotation and initial stress on Rayleigh wave propagation in 

orthotropic elastic half-space in its gravity field with impedance boundary conditions. 

The results are presented graphically for a particular numerical example with the help of 

derived secular equations.  

 2 PROBLEM FORMATION

Let origin of the coordinate system at any point on the plane surface beoxyz , the initial 

compression P be along x-axis and y-axis be pointing vertically downward in to the half 

space. With this, it is represented by 0y ³  and stress free surface is y=0 and assume that 

the wave is propagating along x-axis. With this, all the particles on the line parallel to   z-

axis are equally displaced and the field equations are not depending on the   z-coordinate. 

Choose the medium is rotating about z-axis with the speed of angular rotationW . So, 

angular rotation vector 
®

W  taken as ( )W=W
®

,0,0 with two types of accelerations 

named as Coriolis acceleration
÷
ø

ö
ç
è

æ
´W

®®

u2
and centripetal acceleration

÷
ø

ö
ç
è

æ
´W´W

®®®

u
. 

The wave is two dimensional in xy -plane, so, macro displacement vector
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( )wvuu ,,=
®

 with
( )tyxuu ,,=

, 
( )tyxvv ,,=

  and
0=w

. Let the acceleration due to 

gravity be g. Body force components are ( ) ( )gYX -= ,0, . Choose that the initial 

stress due to gravity is hydrostatic. Datta [16] introduced stress tensor ijs  as 

follow

                                          xx yys s s= = ,  0xys =                                       (1)

The equilibrium relations for the initial stress field also given by Datta [16] as

  
0=

¶

¶

x

s

,   
g

y

s
r

¶
=

¶                                                                                     (2)

where   ρ is the mass  density of the material.

With the use of equations (1) and (2), the equations of motion of an orthotropic elastic 

solid involving initial stress P and gravi ty g  in  three dimensional  form is  

g iven by      [Ref. [3], chapters 3 and 5]

2
, , , , , ,[ 2 ] [ ]xx x xy y xz z xy y xz z xu u v P gvr s s s f f r-W + W = + + + - -̇ ̇ ̇                                  (3)

2
, , , , ,[ 2 ]  xy x yy y yz z xy x yv v u P gur s s s f r-W - W = + + - +̇ ̇ ̇                                              (4)

, , , , zx x zy y zz z xz xw Pr s s s f= + + -̇ ̇ (5)

where , ,x y zf f f  are micro-rotational vector components along x, y, z directions 

respectively. The superpose dot indicates partial derivative with respect to time variable t, 

partial derivative with respect to the coordinate axis is denoted by the comma followed 

and

1

2
ij

u v

y x
f

æ ö¶ ¶
= -ç ÷

¶ ¶è ø                                                                         (6)
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The equations (3) to (5) in two-dimensional xy -plane reduces to  

 

2
2

2
2xy xyxx v u v

P g u
x y y x t t

s fs
r r

¶ ¶ é ù¶ ¶ ¶ ¶
+ + - = -W + Wê ú

¶ ¶ ¶ ¶ ¶ ¶ë û                                           (7)  

 

2
2

2
2xy yy xy u v u

P g v
x y x y t t

s s f
r r

¶ ¶ ¶ é ù¶ ¶ ¶
+ - + = -W - Wê ú

¶ ¶ ¶ ¶ ¶ ¶ë û                                           (8)

and the stress ijs  can be written as

11 12( ) ( )xx

u v
c P c P

x y
s

¶ ¶
= + + +

¶ ¶                                                                         (9)

12 22yy

u v
c c

x y
s

¶ ¶
= +

¶ ¶                                                                                                 (10)

( )xyxy vuc ,,44 +=s                                                                                                 (11)

Where  ijc  ; i, j =1, 2, 3, 4 are the stiffness tensor components in the contraction notation 

and the problem is in two dimensional 
xy

-plane, so that 13 33 32 0.c c c= = =

Inserting equations (9) to (11) in equations (7) and (8) also considering above  assumptions 

with 
( )44 11 12

1

2
c c c= -

,we get equations (7) and (8) in terms of displacement 

components u, v, w as

2 2 2 2 2 2
2

11 122 2 2 2
( ) 2 2 2 2

u u v v u v u v
c P c g u

x y x y x y y x t t
r r

é ù é ù é ù¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + + + - - = -W + Wê ú ê ú ê ú

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ë û ë û ë û    (12) 

 

2 2 2 2 2 2
2

11 12 222 2 2 2
( ) 2 2 2 2

u v u v v u v u
c c P c g v

x y x x y x y x t t
r r

é ù é ù é ù¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + - - + + = -W - Wê ú ê ú ê ú¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ë û ë û ë û   (13) 

The derivable displacement components u(x, y, z), v(x, y, z) can be expressed in terms 

of Helmholtz functions ( ) ( ) ( )( ),  ,  , ,  ,  ,  . ., ,  ,0     H x y t M x y t i e u v H M= Ñ +Ñ´  as

H M
u

x y

¶ ¶
= +
¶ ¶    ,  

H M
v

y x

¶ ¶
= -
¶ ¶                                                                         (14)
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After inserting eq. (14) in eqns. (12) and (13) we obtain

2
2 2

11 2
( ) 2

M H H
c P H g H

x t t
r r

é ù¶ ¶ ¶
+ Ñ + = -W + Wê ú¶ ¶ ¶ë û                                     (15)

2 2
2 2

11 12 2 2
( ) 2 2 2 2

M H M M
c P M c g g M

x x t t
r r

é ù¶ ¶ ¶ ¶
+ Ñ - - = -W + Wê ú¶ ¶ ¶ ¶ë û             (16)                  

and

2 2 2 2
2 2

11 12 222 2 2 2
( ) 2 2 2 2

M M M H M H
c c P M c g M

y x y x t t
r r

æ ö é ù¶ ¶ ¶ ¶ ¶ ¶
- + - Ñ - + = W - - Wç ÷ ê ú

¶ ¶ ¶ ¶ ¶ ¶è ø ë û (17)

2 2 2
2

11 222 2 2
2

H H M H M
c c g H

x y x t t
r r

é ù¶ ¶ ¶ ¶ ¶
+ + = -W - Wê ú¶ ¶ ¶ ¶ ¶ë û                         (18)                     

where  

2 2
2

2 2x y

¶ ¶
Ñ = +

¶ ¶

3   SOLUTION OF THE PROBLEM

Due to the initial compressive, wave taken in the x-direction only, the body wave 

velocities are different in the x and y directions. The compressive waves along x and y 

directions are given in equations (15) and (18) respectively and shear waves along x and y 

directions are respectively given in equations (17) and (16). Our concentration is 

Rayleigh wave propagation in x-direction only. So, we consider the equations (15)      

and (17).

For harmonic wave propagation along horizontal direction (i.e., along x-axis), we   may 

assume the solutions of equations (15) and (17) in the f o l l ow ing  form of 

( ) [ ( )]H F y exp ik x vt= -                                                                         (19)

( ) ( )M G y exp ik x vt= -é ùë û                                                                                     (20)

where F and G are amplitude ratios, k and v are respectively the wave number and wave 
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velocity connected with the angular frequency 

w

 with 

v

k
w =

, 

Substituting equations (19) and (20) in equations (15) and (17), we obtain the

following differential equations

( ) ( )2 2 2( ) 0D F y G ya b+ + =                                                                                     (21) 

and

( ) ( )2 2 2( ) 0D G y F yg d+ + =                                                                                     (22)

where

2
2

2
;D

y

¶
=
¶

       

( )2 2 2

2 2

11

2
;

( )

v k i vk
k

c P

r
a

+ W +W
= -

+         

2

11

;
( )

i gk

c P

r
b =

+

( ) ( )
( )

2 2 2 2
11 122

11 12 22

2
;     

2

c P c k v k

c c P c

r
g

+ - - W -
=

+ - -

( )2

11 12 22

2 2  
    

( 2 )

ikg i kv

c c P c

r
d

- W
=

+ - -
                     (23)

 On using eq. (21) in eq. (22) we get the following fourth order differential equation   for 

F(y)

( )4 2( ) 0D aD b F y+ + =                                                                                              (24)

where

2 2 ;a a g= +   
2 2 2 2 b a g b d= -                                                                                   (25)

Equation (24) can be written in the form of

( )2 2 2 2
1 2( )( ) 0D m D m F y+ + =                                                                                      (26)

With 

1

2 2 2 2
2 ;    m m a a g+ = = + 1

2 2 2 2 2 2
2m m b a g b d= = -
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( ) ( )
22 2 2 2 2 2 2 2

1 2

1
; 4

2
m m a g a g b d

é ù
= + ± - +ê úë û                                                           (27)

Since the solution of eq. (26) must be exponential nature, so assume its solution of   

the form

( ) ( ) ( ) ( ) ( )1 1 2 2F y Aexp im y Bexp im y A exp im y B exp im y* *= - + + - +                         (28)

where A, B, A  and B  are constants.

For Rayleigh type waves, the displacement must be zero as   y ®¥ . So the 

constants corresponding to B, B  must vanish and 1 2,   m m  are taken to be imaginary. So, 

eq. (28) reduces to

( ) ( ) ( )1 2F y Aexp im y A exp im y*= - + -                                                                       (29)                  

So, that eq. (19) reduces to

( ) ( ) ( ) ( )1 2 expH y Aexp im y A exp im y ik x vt*é ù= - + - -é ùë ûë û                                          (30)

 Inserting eq. (29) in eq. (21) we get the function G(y) as

( ) ( ) ( )1 1 2 2G y A exp im y A exp im yz z*= - + -                                                             (31)

Where

2 2

2

( )
      : 1, 2j

j

m
j

a
z

b

+
=- =

                                                                                        (32)

From eq. (20) the potential function M becomes

( ) ( ) ( )1 1 2 2 expM A exp im y A exp im y ik x vtz z*é ù= - + - -é ùë ûë û                                        (33)

On using equations (30) and (31) in eq. (14), the m a c r o  displacement components     

u(x, y, t), v(x, y, t)           becomes

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 12 2024

PAGE NO: 685



 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2, , expu x y t i k m Aexp im y i k m A exp im y ik x vtz z *é ù= - - + - - -é ùë ûë û (34)       

and                      

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2, ,v x y t i m k Aexp im y i m k A exp im y exp ik x vtz z *é ù= - + - - + - -é ùë ûë û (35)

4 BOUNDARY CONDITIONS AND SECULAR EQUATION

The general form of two dimensional impedance boundary conditions in terms of 

displacements and stresses are presented by Malischewsky [11] as follows:

2 0j j jus +S =  for 0y = , where jS represents the impedance parameters with the 

dimensions of stress / length.  For elastic half-space, Godoy, Duran and Nedelec [12] 

expressed jS as j jZwS =  where jZ are impedance real parameters with dimensions are 

stress / velocity and circular frequency ω is defined by kv=w .  So, the impedance 

boundary conditions at the surface       y = 0 of an orthotropic elastic medium are

2  0, 1,2   or ,    or   0j j j yj j jZ u j j x y Z us w s w+ = = = + =                                                                         
which can be written as

1 0;yx Z us w+ =    2 0yy Z vs w+ =                                    (36)

With the help of eq. (10), (11), (34) and (35), the boundary conditions (36) on the     

surface   y = 0 reduces to the following system of two homogeneous equations

( ) ( ) ( ) ( )44 1 1 1 1 44 1 1 44 2 2 2 2 44 2 1( ) ( ) 0c k m k k m c m i Z A c k m k k m c m i Z Az z w z z w *+ + - + + + + - + =é ù é ùë û ë û  

( )( ) ( )( )12 1 1 1 1 12 1 2 12 2 2 2 2 12 2 2( ) ( ) 0c k k m m k c m i Z A c k k m m k c m i Z Az z w z z w *- + + + + - + + + =é ù é ùë û ë û    (37)

Eliminating ,  A A*
in the system (37), one can obtain the following secular equation for 

Raleigh waves in an orthotropic elastic solid which is the function of initial stress, gravity 

and impedance  boundary parameters.

( ) ( )
( ) ( )

( )( )
( )( )

44 1 1 1 1 44 1 1 12 1 1 1 1 12 1 2

44 2 2 2 2 44 2 1 12 2 2 2 2 12 2 2

c ( m ) ( )

( ) ( )

k m k k c m i Z c k k m m k c m i Z

c k m k k m c m i Z c k k m m k c m i Z

z z w z z w

z z w z z w

+ + - + - + + +
=

+ + - + - + + +           (38)
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5   PARTICULAR CASES

(i) When the angular rotation is neglected (i.e., Ω = 0), then the equation        (38) 

reduces to

( ) ( )
( ) ( )

( )( )
( )( )

* * * * * * * * * *
44 1 1 1 1 44 1 1 12 1 1 1 1 12 1 2

* * * * * * * * * *
44 2 2 2 2 44 2 1 12 2 2 2 2 12 2 2

c ( m ) ( )

( ) ( )

k m k k c m i Z c k k m m k c m i Z

c k m k k m c m i Z c k k m m k c m i Z

z z w z z w

z z w z z w

+ + - + - + + +
=

+ + - + - + + +    (39)

where

2 2 2 2 2* * 2 2 2 2
1 2

1
: ( ) ( ) 4     ; 

2
m m a g a g b d* * *é ù= + ± * - * +

ê úë û

2 2* *

*

2

(
 ; 1, 2;j

j

m
j

a
z

b

+
= =

     

2
2

* 2

11

;k
c P

rw
a = -

+                                                 (40)

2
2 2

11 12

11 12 22

( ) 2
; 

2

k c P c

c c P c

rw
g * + - +

=
+ - -      

2

11 12 22

2

2

ikg

c c P c

r
d * =

+ - -

Equations (39) represents the frequency equation of Rayleigh  waves in a non- rotating 

orthotropic elastic medium with initial stress, impedance boundary p a r a m e t e r s   in 

its gravity field.

(ii) After neglecting initial stress (i.e., P = 0), one can reduce eq. (38) as

44 1 1 1 1 44 1 1 12 1 1 1 1 12 1 2

44 2 2 2 2 44 2 1 12 2 2 2 2 12 2 2

( ) (  )(  ) (  ) (  )(  )

( ) (  )(  ) (  ) ( )(  )

c k m k k m c m i Z c k k m m k c m i Z

c k m k k m c m i Z c k k m m k c m i Z

z z w z z w

z z w z z w

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + - + - + + +
=

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + - + - + + +   (41)

where                                                                                                                                   

( )2 2 2 2 2 2 2 2' ' ' ' ' ' 2 ' '
1 2

1
   ( )  4    

2
m m a g a g b dé ù= + ± - +

ê úë û

  

2' 2

'

2

( ' )
; 1,2;

'

j

j

m
j

a
z

b

+
= =

   

2
2 2

11

( 2 )
'

i
k

c

r w w
a

+ W +W
= -

                        (42)                    

2

11

' ;
i gk

c

r
b =

 

2 2 2
2 11 12

11 12 22

( ) 2 ( )
' ;

2

c c k

c c c

r w
g

- - W -
=

+ -  

2

11 12 22

2 ( 2 )
'

2

ikg i kv

c c c

r
d

- W
=

+ -
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Equation (41) represents dispersion relation of Rayleigh surface waves in a rotating 

orthotropic elastic solid with impedance boundary parameters i n  its gravity field.

 (iii) In the absence of rotation and initial stress (i.e., Ω = 0, P = 0),               eq. (38)  

reduces to

( ) ( )
( ) ( )

( )
( )

44 1 1 1 1 44 1 1 12 1 1 1 1 12 1 2

44 2 2 2 2 44 2 1 12 2 2 2 2 12 2 2

c ( n ) c ( )( i )

( ) ( )( )

k n k k c n i Z k k n n k c n Z

c k n k k n c n i Z c k k n n k c n i Z

h h w h h w

h h w h h w

+ + - + - + + +
=

+ + - + - + + +    (43)

Where

22 2 2 2 2 2 2 2
1 2 0 0 0 0 0 0

1
, ( ) ( ) 4 ;

2
n n a g a g b dé ù= + ± - +

ê úë û

2 2
0

2
0

( )
; 1,2

j

j

n
j

a
h

b

+
= =

2
2 2
0

11

;k
c

rw
a = -

 

2
0

11

;
i gk

c

r
b =

  

2 2
2 11 12
0

11 12 22

( ) 2
;

( 2 )

c c k

c c c

rw
g

- +
=

+ -   

2

0

11 12 22

2

2

i kg

c c c

r
d =

+ -         (44)   

Equation (43) represents dispersion relation of Rayleigh surface waves in a non- rotating 

orthotropic elastic solid with impedance boundary p a r a m e t e r s  in its gravity field.

6 NUMERICAL EXAMPLE AND DISCUSSIONS

To discuss the theoretical results, we consider a particular numerical example as an 

orthotropic medium; so, consider relevant parameters from Abd-Alla  et al. [15] as 

under:

( )11 12 22 44 11 12

1
 2.694; 0.661; 2.363 ;  ;

2
c c c c c c= = = = -

 Gravitational force of the earth as   

g = 9.8 m/sec2; mass density   ρ = 6.

At wave length l=10 cm, the natural wave number 2 /k lp=  and take the natural angular 

frequency ω = 10 rad / sec. Initial stress effects in a rotating and non rotating  solid on the 

Rayleigh wave velocity against the non-dimensional impedance parameter Z1 are shown 

in fig.1 to fig.3.
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FIGURE 1: Impedance parameter Z1 versus square velocity of Rayleigh wave for 
rotation =1.5.

  

       

FIGURE 2: Impedance parameter Z1 versus square velocity of Rayleigh wave for 
rotation=0.
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FIGURE 3: Impedance parameter Z1 versus square velocity of Rayleigh wave for 

rotating, non-rotating and initial stresses.

It is observed that the Rayleigh wave velocity is increases with the increasing initial 

stress in the rotating solid for the  range of Z1 parameter with  10 0.8Z£ £ .The initial 

stress is inverse proportional to the Rayleigh wave velocity in non-rotating solid at very 

low impedance parameter Z1 values with 10 0.2Z£ £  and is proportional in non- rotating 

solid at high impedance parameter values of Z1. The effects of rotations in an initially 

stressed and non-stressed solid on the Rayleigh wave velocity against the impedance 

parameter Z1 are shown in fig.4 to fig.6.

FIGURE4: Impedance parameter Z1 versus square velocity of Rayleigh wave                for 

P=2.
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FIGURE 5: Impedance parameter Z1 versus square velocity of Rayleigh wave for      P = 
0.

    

FIGURE 6: Impedance parameter Z1 versus square velocity of Rayleigh wave for  

rotating solids.

It is observed that high rotations are proportional to the Rayleigh wave velocity in 

an initially stressed solid at high impedance parameter Z1-values. Rayleigh wave velocity 

is increases with the increasing angular rotation of non-compressed solid. The effects of 

initial compression in rotating and non-rotating solids on the Rayleigh wave velocity 

against impedance parameter 2Z with 20 1Z£ £  are shown in fig.7 to fig.9.

FIGURE 7: Impedance parameter Z2 versus square velocity of Rayleigh wave for 
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rotation=1.5.

FIGURE 8: Impedance parameter Z2 versus square velocity of Rayleigh wave for 
rotation=0.

FIGURE 9: Impedance parameter Z2 versus square velocity of Rayleigh wave for non- 
rotating, rotating & different initial stresses.
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Rayleigh waves in a rotating and initially stressed solid are vanishes at low impedance 

parameter values Z2 = 0.1. Initially stress is proportional to the Rayleigh wave velocity in a 

non-rotating solid and these waves also vanishes at low impedance parameter value Z2 = 

0.1 and propagate with high speed and high impedance parameter Z2 = 1.The effects of 

rotation in an initially stressed and non-stressed solid on the Rayleigh wave velocity 

against the impedance parameter 2Z  are shown in fig.10 to fig.12.

FIGURE 10:   Impedance parameter Z2 versus square velocity of Rayleigh wave 

for P=1.5.

FIGURE 11: Impedance parameter Z2 versus square velocity of Rayleigh wave 

for  P = 0.

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 12 2024

PAGE NO: 693



  

FIGURE 12: Impedance parameter Z2 versus square velocity of Rayleigh wave for 

different rotations & different initial stresses.

From these figures, one can observed that the Rayleigh wave velocity is decreases with 

the increasing angular rotations of initially stressed solids. Also the Rayleigh wave 

velocity is decreases with the increasing angular rotations in a non-stressed solid at high 

impedance Z2 parameter values with 20.7    1 Z£ £ . The waves in a rotating, initially 

stressed solid are vanishes at low impedance parameter Z2 with Z2 = 0.1 and having high 

speed at high impedance parameter Z2 with Z2 = 1.

7 CONCLUSION

In this study, the effects of angular rotation and initial stress on Rayleigh waves in an 

orthotropic elastic solid in its gravity field with impedance boundary conditions are 

considered. The basic governing equations are solved by using traditional techniques to 

obtain the dispersion relations of Rayleigh waves. From the theoretical computations and 

a numerical example, we may conclude that:

i) The dispersion relations pertaining to Rayleigh surface waves are derived in    

orthotropic elastic solid.
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ii) Rayleigh surface waves in an orthotropic elastic solid in its gravity field with 

impedance boundary parameters are influenced by the speed of angular rotation 

and initial stress of the solid.

iii) Initial stresses of rotating solids are proportional to the Rayleigh wave velocity.

iv) Rayleigh wave velocity in a rotating solids are proportional to the initial stress of 

the solid and i t  i s  inverse proportional t o  initial stress at low impedance 

parameters  in non-rotating solids.

v) Rayleigh wave velocities are proportional to high rotations of initially stressed 

solids, while they are proportional to the rotations in non-stressed solids.

vi) Rayleigh wave velocities in rotating and initially stressed solids are vanishes at 

low impedance parameter Z2 = 0.1 and propagate with high velocities at high 

impedance parameter Z2 = 1.

The theoretical development of dispersion relations pertaining to Rayleigh type surface 

waves can be immensely helpful for the researchers who are working in the fields of 

geophysics, earthquake engineering, seismology and mine engineering. The considered 

particular numerical example of this article is a model to them for further investigations 

in the behavior of earth layers under particular boundary conditions.
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