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Abstract

In this article, a computational method is devised to solve the multi parameter
singularly perturbed one dimensional parabolic equation. The backward Euler
method is utilized for temporal discretization. For spatial discretization, the
trigonometric spline is used and the first order derivatives in the discrete scheme
of trigonometric spline are replaced by the finite differences of higher order. To
solve the resulting system, a tridiagonal solver is utilized. The proposed
numerical scheme is designed to exhibit parameter-uniform convergence and
achieve fourth-order accuracy in space and first-order accuracy in time. The
proposed scheme is utilized to solve model examples and compare them with
existing methods in the literature, in order to validate the effectiveness of the

method.

Keywords: Multi parameter; Singularly perturbed; Trigonometric spline;

Uniform mesh; Parameter uniform

1.1 Introduction

Due to the inherent characteristics of certain physical phenomena, such as minuscule
viscosity in the Navier-Stokes equations, singularly perturbed partial differential
equations (SPPDE) are common. They are also involved in the modelling and analysis
of heat and mass transfer processes in situations where the rate of reaction is high, and
the thermal conductivity and diffusion coefficients are low. Singularly perturbed models
have been developed in biology to represent the dynamics of a variety of biological
systems. Many real-life applications make use of the diffusive parameter's tiny
size.SPPDEs are encountered in various research domains within applied mathematics
[1,2,14]. These include applications in the assessment of water quality in river
networks, the modelling of oil extraction from underground reservoirs, the analysis of
convective heat transport problems with high Peclet numbers, the study of atmospheric
pollution, and the investigation of fluid flow at high Reynolds numbers, among others.

More recently, many robust numerical techniques have been created for solving SPPDE
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[5,11]. Munyakaji and Patidar [16] worked out similar problem by treating a novel fitted
operator finite difference method (FDM). Munyakaji [15] developed a reliable FDM for
solving a class of SPPDEs with convection and diffusion terms affected by the two
parameters. Aziz and Jain [7] analysed using adaptive splines. In their study, Clevaro et
al. [3] successfully addressed the SPPDE problem by employing a numerical method
that exhibits uniform convergence with respect to the diffusion parameter. Kadalbajoo
and Yadaw [8] studied numerical methods for a class of singularly perturbed boundary
value problem with two parameters. A parameter uniform numerical scheme for SPPDE
is developed by Gemechis and Mesfin [12] with small delay arising in computational
neuroscience. For two-parameter initial BVPs with parabolic convection-reaction-
diffusion in one dimension, Das and Mehrmann [4] proposed an adaptive
FDM.Gowrisankar and Natesan [6] studied robust numerical scheme to solve SPPDE
using classical upwind FDM on layer-adapted nonuniform meshes. In their study,
Kadalbajoo and Yadaw[9] conducted an investigation on a Ritz-Galerkin finite element
method employed for solving a two-parameter SPBVP. Gemechis and Mesfin [13]
considered SPPDE with a small delay on convection and reaction terms. They used the
Crank Nicolson method in time derivative discretization and the mid-point upwind
FDM on piecewise uniform Shishkin mesh for the space variable derivative
discretization.It has been observed that the equations under consideration have not been
thoroughly studied numerically. Additionally, the schemes developed in existing
literature mostly exhibit linear order of convergence. The desire to enhance accuracy
and convergence in solving SPPDEs drives our efforts to develop a uniformly
convergent numerical scheme of higher order. Here, we proposed a two-parameter
fitting trigonometric spline method to solve a SPPDE on uniform mesh. The SPPDE

under consideration includes diffusion-convection terms that are influenced by two
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small parameters. For the theoretical analysis, the overall error is decomposed into two
components, the first arises from the discretization in time and the second from the
discretization in space obtained after the temporal discretization. The rest of the paper is
laid out as follows. Section 2 lays out the problem in detail. The discretization of the
time and space variables is of interest, and a scheme is presented for doing so in
sections 3 and 4. Convergence of the procedure is demonstrated in Section 5. Section 6
presents our findings regarding the comparison of several existing methods. In the final

section, we draw some conclusions and discuss the implications.

1.2 Problem description

In this analysis, we will examine a specific class of SPPDE that is characterised by two

parameters of the form

92 P a
Ley e,y = €155 + £0(5) 52 = b(s)y — =2 = f(5,t) )
where (s,t) € [0,1] x [0, T], subject to

y(s,0) = yo(s), s € (0,1),y(0,t) = ¢(0,t),t € [0,T], y(1,t) = (0,t),t € [0,T](2)

with 0 < &1,&, < 1 and a(s), b(s), f(s,t) are smooth enough and satisfy b(s ) = >
0 and a(s)=a >0 where a,fare real numbers.We impose Y,(0) =
¢(0,0) and y,(1) = ¥(1,0), so that the data agrees at the extreme points (0,0) and

(1,0). The conditions show that there is a constant C which is &, €, independent.
ly(s,t) —y(s,0)| = ly(s,t) —yo(s)| < Ct

ly(s,6) —y(L, )] = ly(s, t) =1, t)| < Cs. (3)

Lemma 1.1 Maximum principle: Let @(s,ty) be any function which is sufficiently
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smooth and satisfying@(0, t), @(1,tx) = 0. Then

Lo(s,t) <0 fors € [0,1] = @(s,ty) = 0 foralls € [0,1].

Proof: The result is by contradictory. If possible, assume that there is a point (s*, t;) €
[0,1] 3 (5", tr) < Owith p(s*, t) = Srer%(i)’?}fp(s, tr)-
It is clear that @4(s™, tr) = 0, @:(s", tx) = 0, pss(s™, tx) = 0.
Thus,

Lo(s™, tx) = e1055(s™, i) + £2a(8)ps(s™, tr) — b(s)p(s™, ) — @e(s™, &) > 0
which contradicts to given hypothesis that Le(s*, t,) < 0 forall s € (0,1).

Therefore, it follows that ¢ (s,t;) = 0 forall s € [0,1].

Lemma 1.2 The solution y(s,t)of Egs. (1), (2) is constrained by |y(s,t)| <

C for (s,t) € (0,1).

Proof. By Eq. (3), |y(s, t)| < Ct, (s, t)in(0,1). Since t € [0,T], the solution is
bounded, hence Ct is again constrained by another constant C. Thus |y(s, t)| < C,

for (s,t) € (0,1).
1.3 Discretization of the problem
1.3.1 Time discretization

Using the implicit Euler method, the time variable is discretised with a constant step
size, denoted as 7, such that [0, T] can be divided in to smaller intervals as t, = 0,tx =

T, t, =kt,k=1,2,...,K, T =T/K. Using the above discretization, we can write the
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Eq. (1) as
Lz = €124(S, ty) + £2a(5)z, (s, t) — (b(s) + %) z (s, tg) = f(s, ty) — %z(s, tker) (@)
with z (5,0) =y, s€(0,1),2(0,t,) = z(1,t,) =0
The equation that defines the roots representing the solution of Eq. (1) is
£,72(5) + £,a(s)A(s) — (l + b(s)) =0 (5)

Two continuous functions produced by Eq. (5) are

_ _&a@s) (b(s)+%) £2a(s)\ >

Al(S) - 281 \/ &1 +( 281 ) (6)
_ _ &a(s) (b(s)+%) e2a(s)\?

/12(5) - 281 +\/ &1 +( 281 ) (7)

These two real solutions characterize the boundary layers ats =0 and s = 1.

Let 6y =— Srg[gt‘ch]ll(s) and 6, = Srg[(&alc]lz(s).

Utilizing the two fitting factors to effectively regulate the parameters in Eq. (4), we

have

Lyz; = slajzss(sj, tk) + eznja(sj)zs(sj, tk) — (b(sj) + %) z(sj, tk) = f(sj, tk) -

1
-2 (), ti-1) (8)
with z(s;,0) = yo,s; € (0,1),2(0,t, ) = z(1,t, ) = 0

The error caused by local truncation of the scheme Eq. (8) is e, = z( s, t;) — Z(s, ty),
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where Z(s, ty) is the solution of Eq. (1), e, is the truncation error in the time

discretization at instant tj,.

dz(s,t)
ot

Lemma 1.3 Suppose | < C,for (s,t) € (0,1),j = 0,1,2. Then measure of the

discrepancy between the exact solution and the numerical approximation at a specific

time step is ||ex|lo < Ct2.
Proof. z(sj,tk) - z(sj,tk_l) = T[slajzss(sj, tk) + szr)ja(sj)zs(sj, tk) -

b(s)z(s;, t) = £(s), ti) ©)
Also z(s, ty_1) = z(s, t) — 12:(s, ty) + ftik_l(tk_l — )z (s,dL. (10)
Using Eq. (8) in Eq. (10),

2((57.t) — 2(s5,tes) = Tlergza(sy, t) + emja(s)als), ) -

b(s;) z(s;, t) — f(s5, t)] +0(x%) (11)
Subtracting Eq. (11) from Eq. (9) gives
tL(ex) = 0(7), €, (0) = e, (1) = 0. (12)

With this we can get the desired estimate using application of the Lemma 1.2 on the

operator L.
1.3.2 Spatial discretization

Now, let N subintervals be assigned to the space interval [0, 1] such that s, = 0, sy=1,

si=So+ithi=1,...,N where h =s; —5;_4.

The problem aims to find a numerical solution in the form of a trigonometric spline
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function for the j segment, denoted by S i (s ), has the form

Si(s) =a; + Bj(s —sj)+¢sinv(s— s;) + czj cosv (s —sj) (13)

~

forj=0,1,...,N — 1, where a;, b

i, €jand d; are constants and v is free parameter.

Let the exact solution be z(s) and z; approximate z(s;) which is obtained by
trigonometric spline S;(s). The spline traverses through the points (sj,z;) and
(Sj+1,Zj+1). The spline S;(s) fulfils the interpolation requirements at s; and s;.; as
well as the first derivative continuity requirements at the common nodes (sj, z;). The
trigonometric function S(s) of class C?[a, b] interpolates z(s) at the grid points sj, for
j = 0,1,2,...,N, reliant upon a parameter v, and becomes a regular spline S(s) in [a,

blasv = 0.
Let S]( S]) = Z],SJ( Sj+1 ) = Zj41, S]”(S]) = Mjande"(st) = Mj+1
Then by simple calculations, we get

M; Ziy1— 2z Mjy,— M; M;cos@ — M1 - M;
- J o7 _Zt1 J 4 1 Joo = i+ 5 J

a.zz.+—[3. —— - .
7T 2 h Vo I v2sind 7 v?

where 8 = vh, forj = 0,1,...,N.

Using the condition S; (s;") = S/ (s;"), we get the following relation

1 )

M1 + 2pM; + T M;_; = ﬁ(zjﬂ —2zj+ zj_4) forj=123,...,N—1. (14)
-1 1 1 cos 0

here 7 = 02 + Gsine'p ~ ez BsinG'Mj - ZSS(Sj' tk)

Rearranging the Eq. (8),
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~ R 1
£10)Zs5(8, tr) = B(s7)2s (55, tie) + a(s)z(sj,ti) + f (55 ti) — ~2(s), tie-1)

where p(s) = —eyn(s)a(s),G(s) = b(s) +%
By using second derivatives of spline, we have
- - 1
e10;M; = p(sj)zs(sj, tie) +q(s)z(sj, ti) + f(sjte) — —2( ), tie—1) (15)

i—1,tr)—4 i) 3 i+1,
Let Zs(5j+1r tk) =~ Z(Sj-1,tk) Z(Szjhtk)"‘ Z(Sj+1,tk) (16)

25(Sj-1, t) = _3Z(5j—1:tk)+4ZZ(:j:tk)_Z(5j+1:tk) (17)

1+ 2wh?Gj41 + 0h(3pj41 + Dj-1)
2.0 = e FORES

— 20 [Pj41 + Pj-1]z(s;, tx)

14 2wh?q;_1 — wh[pj+1 + 3P;-1]
—(  EE—— E(C RS

F o h[f(Sp1 ) = 2251, tee) = F(Sjo15 t) +22(5j-1, i) (18)

Using the Eqgs. (15) - (18) in Eq. (14), we obtain the following tri-diagonal system

Eiz(sj—1, ty) + Fz(sj , tx) + Giz(sj41, ty) = Hj for j=12,...,N —1. (19)

Here

3 ~ ~ R ~ ~ T
Ej = = &0 =51Pj1 h +pPih*w[pjs + 3pj1] = 20 5;p h*j-1 + 5 Bjaah
+ 7 qj-1h* — hp p;
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F, =260+ 2rPj_y h — 4p pih*w[pj41 + Pj—1] — 27 Pj+1h + 2p G;R?

r

~ ~ ~ . . 3
SBj-1h +p B (31 + Bjoa] + 20h%0 P11 + 51 Bjash

Gj = T&105 — 2

+7Gjs1h? + hp B,

h 1 1
Hyie = 02 |(r = 200 B10) Goaie = £ 27-11e2) + 20(Fie = = 0)

1
+ (r + 20p Bjh) (fi41 — ;Zj+1,k—1)

Fitting factors can be acquired using Eq. (6) and Eq. (7) in (19) as

— (b(sp) +3) Bh ()

g = forj=12,...,N

nj = M (coth ('h(zﬂ) + coth (/b(zﬂ)) forj=1,2,...,N where g = Ly

2gza(sj) &1

1.4Convergence Analysis

This new method has a local truncation error of
Tj(h) = [-1+ 2(a + B)]h*e;z'

1 2a &
+ {[(4(,)51 4 §) B— ?] pizl" +(—1+ 12a)?zj“’}h4 + 0(h%)

_ 1 p_32 - _ 6
Then for a = 12,ﬁ =50 = 2081,T(h) = 0(h®).

with boundary conditions, matrix form of Eq. (19) can be
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(A+B)Z+P+T(h) =0

(20)
where
_2810-1 - 810-1 0 O e O_
_810-1 2810-1 2810-1 O ee 0
A _ 0 - 810-1 2810-1 - 810-1 ee 0
L 0 O - 810-1 2810-1 m
U vq 0 0 0
Uy Vs 0 0
B = 0 T3U3V3 0
L 0 0 7y_q1 Uy_qd

3 r
j = =5t Bj-1h +pBiho[i +3pj] = 2050 W2aj1 +5Pjuah + 15k

— hp p;

W = 2r pj_1 h — 4p P;h*w(Pjs1 + Dj—1] — 27 Pjaah + 2p G;R°

A A A N A A 3 . A~
vy =—=2Pj-rh +p PiR20[3Pjs1 + Bjoa] + 20R3p BGja + ST Djeah + 7 Gjah? +

hpp; forj=12..,N—1
P =[G4, + (—&100 + 1)Y0, 42, G3, ) Gn-1 + (—&101 + V)13

1 1
q; = -h? [(7‘ — 2wp Pjh)(fi—1x — ~Zj-1k-1) + 20 (e =~ %), 1e-1)

1 .
+ (r + 20p Bjh) (fi41, k — ~Zj4 w0, 7=123,...,N—1.

T
Z = |zf,2%, .., zf 1|, T(h) = [T, T2, s, oo, Ty—a]”

PAGE NO: 723



KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 24 ISSUE 12 2024

Let Y = [yX,y%, ..., yX_.]T be the solution of Egs. (1) - (2), we have
(A+B)Y+P=0 (21)

Let e}‘ = y}‘ —Z}‘, j=12,..,N—1 be the error of discretization and E =

T
[k, ek, .. ek 4]
Using Eq. (20) and Eq. (21), we get (A + B)E =T(h) (22)

Let L; be the sum of the elements of j** row of (4+B), then

L = €101+ (30j-1 = Pjs1)h — hp B + (7 Gj41 + 20 )R* — p iR w|[pjs1 +

3pj-1] + 2w Pjp h3G;41 forj =1

Z] = hz(r@j_l + qu] + rflj+1) + 2h3p0\)p’\](q\]+1 - q\j—l)' ] = 2, ,N -2

L = &101 + 2 (Bj-1 = 3Pjs1)h — hp B + (r 4j-1 + 2p0;)R* — p iR w|[pjs1 +

Pj—1] —2wPjp 3G, forj=N-—1

Let W= 1rgjlgvlp(5)|, Wy = ;gjcgcvlp(S)l, and Wy = ggjlgvlq(S)l, Wy =
1rgjaglcvlq(S)l-

Since 0 < &; << 1 and & « O(h),it is clear that forh, (A + B) is monotone.
As (A+ B) !existsand (A + B)™! > 0, from Eq. (22), we have

IEI < 1A+ B)~ LTI (23)

Let (A + B)j be the (j, k)™ element of (A + B)~" and

-1y — N-1 -1 = .
ICA+B)7H I = max TAZi(A+B)ji and IT(W)Il = max |Ti(R)| 24)
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Since (A+B)j; =20 and Y3_{(A+B)ji.Ly=1,j=123,...,N—1.

1 1 .
J— < =
Lj ~ h2[(r+2p)W,x—4pwW2] /J

(A+B)j) < 1,....N—1 (29

N-1 -1 1 1
Furthermore, 327 (A + B)j) < T e EVSTnE (26)
Using Egs. (25) - (26) in Eq. (23), we get IE|l < 0(hY). (27)
Thus, from Eq. (12) and Eq. (27), we obtain
kK _ k 4
max |yf—zf| <C(r* +1) (28)

0<j<N,0sk<K

which demonstrates that our method exhibits fourth-order convergence in space and

on uniform mesh.

. 1 5
first order in time fora = —,f =—,w = —
12 12 20g,

1.5Numerical Results

Conducted In order to computationally demonstrate the proposed method, we examine a

class of SPPDE that consists of two parameters. For each mesh node, we determine the

N e, — 6289, ]

maximum absolute error (MAE) by E. . = max
’ 0<j<N;0<k<

when exact solution is unknown.
Example 1.1¢ 62—y+£(1+s)a—y— (S)—a—y=1652(1—s)2
ple .08 55 2 2s Y at ’

wherey(s,0) = 0vs € (0,1);y(0,t) =0,y(1,t) =0 fort € [0,1].

The results obtained from Tables 1.1 and 1.2 are compared with the corresponding
values in Tables 1 and 5 of [15] for the different parameter €;and &,. The result profile

at the specified nodes is shown in Fig. 1.1 for Example 1.1.
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2
Example 1.2¢; 2732/ —(2-5% Z—Z —sy(s) — % = —10t%e"ts(1 —s)
wherey(s,0) =0,vs € (0,1),y(0,t) =0,y(1,t) =0, fort € (0,3).

Table 1.3 shows the MAEs for range of &; and fixed &, in comparison with the results

of [18]. The result profile at the specified nodes is shown in Fig. 1.2 for Example 1.2.

Example 1.3
2
_y _ 2 a_y_a_y_ _ _ t _
81522 +e(1+s(1—-5s)+t )as 5t (1+5st)y=s(1- s)(e*—=1)

wherey(s,0) =0 Vs €(0,1),y(0,t) =0,y(1,t) =0, fort € [0,1].

The comparison of the MAEs is shown in Tables 1.4 for range of &;and fixed &, with
the results of [4]. The result profile at the specified nodes is shown in Fig. 1.3 for

Example 1.3.

Table 1.1 Comparison of MAEs with &, = 272and K(=N) for Example 1.1.

& \N

8

16

32

64

128

256

512

Our

results

2—2

1.15E-2

2.92E-3

7.39E-4

1.86E-4

4.68E-5

1.17E-5

2.93E-6

2—4

3.46E-2

1.02E-2

2.78E-3

7.24E-4

1.84E-4

4.66E-5

1.17E-5

6.25E-2

2.63E-2

8.85E-3

2.58E-3

6.97E-4

1.81E-4

4.61E-5

5.64E-2

3.23E-2

1.67E-2

6.76E-3

2.23E-3

6.47E-4

1.74E-4

5.49E-2

1.85E-2

5.60E-4

1.20E-2

8.08E-3

4.23E-3

1.70E-3

591E-2

1.50E-2

5.89E-3

3.71E-3

2.91E-3

2.02E-3

1.06E-3

6.29E-2

1.98E-2

6.12E-3

2.55E-3

1.28E-3

891E-4

7.23E-4

6.48E-2

2.34E-2

941E-3

3.76E-3

1.60E-3

7.33E-4

3.48E-4
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6.48E-2

2.34E-2

941E-3

3.76E-3

1.60E-3

7.33E-4

3.48E-4

Results in [15]

0.17E-1

0.71E-2

0.31E-2

0.14E-2

0.68E-3

0.33E-3

0.16E-3

0.30E-1

0.11E-1

0.45E-2

0.19E-2

0.86E-3

0.41E-3

0.20E-3

0.51E-1

0.19E-1

0.72E-2

0.29E-2

0.12E-2

0.58E-3

0.28E-3

0.62E-1

0.32E-1

0.13E-1

0.49E-2

0.19E-2

0.81E-3

0.37E-3

0.62E-1

0.34E-1

0.17E-1

0.82E-2

0.32E-2

0.12E-2

0.49E-3

0.62E-1

0.34E-1

0.17E-1

0.88E-2

0.44E-2

0.20E-2

0.81E-3

0.62E-1

0.34E-1

0.17E-1

0.88E-2

0.44E-2

0.22E-2

0.11E-3

0.62E-1

0.34E-1

0.17E-1

0.88E-2

0.44E-2

0.22E-2

0.11E-3

Tablel.2 Comparison of MAEs with &; = 27%and N (=2K) for Example 1

& \N

25

26

27

28

29

210

Our resul

ts

2—2

0.549E-2

0.144E-2

0.369E-3

0.931E-4

0.234E-4

0.586E-5

2—4

0.557E-2

0.144E-2

0.369E-3

0.931E-4

0.234E-4

0.586E-5

2—6

0.557E-2

0.144E-2

0.369E-3

0.931E-4

0.234E-4

0.586E-5

2—8

0.557E-2

0.144E-2

0.369E-3

0.931E-4

0.234E-4

0.586E-5

2—40

0.557E-2

0.144E-2

0.369E-3

0.931E-4

0.234E-4

0.586E-5

Results in [15]

0.086E-1

0.039E-1

0.018E-1

0.092E-2

0.045E-2

0.022E-2

2—4

0.075E-1

0.032E-1

0.015E-1

0.073E-2

0.036E-2

0.017E-2

2—6

0.074E-1

0.032E-1

0.014E-1

0.071E-2

0.035E-2

0.017E-2

0.074E-1

0.032E-1

0.014E-1

0.071E-2

0.035E-2

0.017E-2
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2—40

0.074E-1

0.032E-1

0.014E

-1 0.071E-2

0.035E-2

0.017E-2

TABLE1.3 Similitude of MAEs for &, = 27%nd N in Example 1.2

gl N- 24 25 26 27 28

T - 1/10 1/20 1/40 1/80 1/160
Our Results
278 9.1680E-3 | 2.6628E-3 | 2.3183E-3 | 1.5931E-3 | 6.8094E-4
2710 1.1708E-2 | 2.9057E-3 | 9.0329E-4 | 6.4602E-4 | 5.8001E-4
2712 1.6118E-2 | 4.2474E-3 | 9.6329E-4 | 4.0205E-4 | 2.2189E-4
2714 1.7922E-2 | 5.0965E-3 | 1.2884E-3 | 3.9533E-4 | 1.9563E-4
2716 1.8449E-2 | 5.3770E-3 | 1.4355E-3 | 4.5694E-4 | 1.9543E-4
Results in [18]

278 0.7863E-2 | 0.4366E-2 | 0.2202E-2 | 0.8796E-3 | 0.2670E-3
2710 0.7863E-2 | 0.4370E-2 | 0.2295E-2 | 0.1174E-2 | 0.5706E-3
2712 0.7863E-2 | 0.4370E-2 | 0.2295E-2 | 0.1175E-2 | 0.5944E-3
2714 0.7863E-2 | 0.4370E-2 | 0.2295E-2 | 0.1175E-2 | 0.5944E-3
2716 0.7863E-2 | 0.4370E-2 | 0.2295E-2 | 0.1175E-2 | 0.5944E-3

TABLE1.4 Similitude of MAEs for &, = 10~7 in Example 1.3

N - 64 128 256 512
glrt- 1/2* 1/25 1/26 1/27
Our Results
107 | 7.0053E-4 4.5344E-5 | 1.1392E-5 | 1.7946E-4
10=7 | 7.0036E-4 4.5341E-5 | 1.1391E-5 | 1.7944E-4
1078 | 7.0895E-4 4.5490E-5 | 1.1410E-5 | 1.8059E-4
1079 | 8.4775E-4 4.7637E-5 | 1.1678E-5 | 1.9785E-4
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Results in [4]

10

0.96949E-3

0.25231E-3

0.49906E-3

0.12824E-3

1077

0.98712E-3

0.25485E-3

0.50049E-3

0.12853E-3

1078

0.95128E-3

0.25237E-3

0.50026E-3

0.12781E-3

107°

0.96746E-3

0.25237E-3

0.50012E-3

0.12803E-3

Figure 1.1 Result profile
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& = 2_2, &y = 2_6 & = 2_8, &y = 2_0

Figure 1.2 Result profile for Example 1.2 for diverse values of &; and €, with N =

128 ,K = 64

81 = 10_6, 82 = 10_781 = 10_7, 82 = 10_6

Figure 1.3 Result profile for Example 1.3 for diverse values of ¢; and &, with K =

32,N = 128.

1.6Conclusion

The desire to enhance accuracy and convergence in solving SPPDEs drives our efforts
to develop a uniformly convergent numerical scheme of higher order. We proposed a
scheme to examine the solution of a SPPDE of diffusion-convection type with two
small parameters. We partially discretized the continuous problem in the temporal
direction using the implicit Euler scheme. Use of the trigonometric spline method to
discretize space on a constant mesh led to a fourth order convergence in space.
Theoretical analysis to obtain the stability and error estimate shown that the proposed

method is unconditionally stable. The convergence analysis has demonstrated that the
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method exhibits parameter uniformity. The accuracy of the scheme is determined by

comparing it with some existing methods available in literature. For a given value of

&5, we find that the MAEs in Table 1.1,1.3 and 1.4 remains unchanged as &;approaches

to zero. It demonstrates that the method in use is up to a level of precision of &;. For

fixed &4, h and 7, Table 1.2 also confirms the &,- uniform convergence.
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