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Abstract 

In this article, a computational method is devised to solve the multi parameter 

singularly perturbed one dimensional parabolic equation. The backward Euler 

method is utilized for temporal discretization. For spatial discretization, the 

trigonometric spline is used and the first order derivatives in the discrete scheme 

of trigonometric spline are replaced by the finite differences of higher order. To 

solve the resulting system, a tridiagonal solver is utilized. The proposed 

numerical scheme is designed to exhibit parameter-uniform convergence and 

achieve fourth-order accuracy in space and first-order accuracy in time. The 

proposed scheme is utilized to solve model examples and compare them with 

existing methods in the literature, in order to validate the effectiveness of the 

method. 

Keywords: Multi parameter; Singularly perturbed; Trigonometric spline; 

Uniform mesh; Parameter uniform 

1.1 Introduction 

Due to the inherent characteristics of certain physical phenomena, such as minuscule 

viscosity in the Navier-Stokes equations, singularly perturbed partial differential 

equations (SPPDE) are common. They are also involved in the modelling and analysis 

of heat and mass transfer processes in situations where the rate of reaction is high, and 

the thermal conductivity and diffusion coefficients are low. Singularly perturbed models 

have been developed in biology to represent the dynamics of a variety of biological 

systems. Many real-life applications make use of the diffusive parameter's tiny 

size.SPPDEs are encountered in various research domains within applied mathematics 

[1,2,14]. These include applications in the assessment of water quality in river 

networks, the modelling of oil extraction from underground reservoirs, the analysis of 

convective heat transport problems with high Peclet numbers, the study of atmospheric 

pollution, and the investigation of fluid flow at high Reynolds numbers, among others. 

More recently, many robust numerical techniques have been created for solving SPPDE 
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[5,11]. Munyakaji and Patidar [16] worked out similar problem by treating a novel fitted 

operator finite difference method (FDM). Munyakaji [15] developed a reliable FDM for 

solving a class of SPPDEs with convection and diffusion terms affected by the two 

parameters. Aziz and Jain [7] analysed using adaptive splines. In their study, Clevaro et 

al. [3] successfully addressed the SPPDE problem by employing a numerical method 

that exhibits uniform convergence with respect to the diffusion parameter. Kadalbajoo 

and Yadaw [8] studied numerical methods for a class of singularly perturbed boundary 

value problem with two parameters. A parameter uniform numerical scheme for SPPDE 

is developed by Gemechis and Mesfin [12] with small delay arising in computational 

neuroscience. For two-parameter initial BVPs with parabolic convection-reaction-

diffusion in one dimension, Das and Mehrmann [4] proposed an adaptive 

FDM.Gowrisankar and Natesan [6] studied robust numerical scheme to solve SPPDE 

using classical upwind FDM on layer-adapted nonuniform meshes. In their study, 

Kadalbajoo and Yadaw[9] conducted an investigation on a Ritz-Galerkin finite element 

method employed for solving a two-parameter SPBVP. Gemechis and Mesfin [13] 

considered SPPDE with a small delay on convection and reaction terms. They used the 

Crank Nicolson method in time derivative discretization and the mid-point upwind 

FDM on piecewise uniform Shishkin mesh for the space variable derivative 

discretization.It has been observed that the equations under consideration have not been 

thoroughly studied numerically. Additionally, the schemes developed in existing 

literature mostly exhibit linear order of convergence. The desire to enhance accuracy 

and convergence in solving SPPDEs drives our efforts to develop a uniformly 

convergent numerical scheme of higher order. Here, we proposed a two-parameter 

fitting trigonometric spline method to solve a SPPDE on uniform mesh. The SPPDE 

under consideration includes diffusion-convection terms that are influenced by two 
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small parameters. For the theoretical analysis, the overall error is decomposed into two 

components, the first arises from the discretization in time and the second from the 

discretization in space obtained after the temporal discretization. The rest of the paper is 

laid out as follows. Section 2 lays out the problem in detail. The discretization of the 

time and space variables is of interest, and a scheme is presented for doing so in 

sections 3 and 4. Convergence of the procedure is demonstrated in Section 5. Section 6 

presents our findings regarding the comparison of several existing methods. In the final 

section, we draw some conclusions and discuss the implications. 

1.2 Problem description 

In this analysis, we will examine a specific class of SPPDE that is characterised by two 

parameters of the form 

���,��
� ≡ ��

���

��� + ���(�)
��

��
− �(�)� −

��

��
= �( �, �)    (1) 

where (�, � ) ∈ [0, 1] × [0, �], subject to 

�(�, 0) = ��(�),  s ∈ (0,1),�(0, �) = �(0, �), � ∈ [0, �], �(1, �) = �(0, �), � ∈ [0, �](2) 

with 0 < ��, �� ≤ 1 and  �(�), �(�), �(�, �) are smooth enough and satisfy �(� ) ≥ � >

0  and  �(� ) ≥ � > 0 where �, �are real numbers.We impose ��(0) =

�(0,0) ��� ��(1) = �(1,0), so that the data agrees at the extreme points (0,0) and 

(1,0).  The conditions show that there is a constant C which is  ��, �� independent. 

|�( �, �) − �( �, 0)| = |�( �, �) − ��( �)| ≤ �� 

|�( �, �) − �( 1, �)| = |�( �, �) − �(1, �)| ≤ ��.     (3) 

Lemma 1.1 Maximum principle: Let φ(s, t�) be any function which is sufficiently 
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smooth and satisfyingφ(0, t�), φ(1, t�) ≥ 0. Then  

Lφ(s, t�) ≤ 0  for s ∈ [0,1] ⇒ φ(s, t�) ≥ 0  for alls ∈ [0,1]. 

Proof: The result is by contradictory. If possible, assume that there is a point (�∗,  ��)  ∈

[ 0, 1 ]  ∋ �(�∗, ��) < 0with �(�∗,  ��) = ���
�∈[�,�]

�(�,  ��). 

It is clear that ��(�∗,  ��) = 0, ��(�∗,  ��) = 0, ���(�∗, ��) ≥ 0. 

Thus, 

��(�∗,  ��) = �����(�∗,  ��) + ���(�)��(�∗,  ��) − �(�)�(�∗,  ��) − ��(�∗,  ��) > 0 

which contradicts to given hypothesis that  ��(�∗, ��) ≤ 0  for all  s ∈ (0,1). 

Therefore, it follows that �(�, ��) ≥ 0  for all s ∈ [0,1]. 

Lemma 1.2 The solution y(s, t)of Eqs. (1), (2) is constrained by |y(s, t)| ≤

C, for  (s, t) ∈ (0,1). 

Proof. By Eq. (3), |�( �, �)| ≤ ��, (�, �) �� (0,1). Since � ∈ [0, �], the solution is 

bounded, hence Ct is again constrained by another constant C. Thus |�( �, �)| ≤ �,

for ( �, �) ∈ (0, 1). 

1.3 Discretization of the problem 

1.3.1 Time discretization 

Using the implicit Euler method, the time variable is discretised with a constant step 

size, denoted as �, such that [0, �] can be divided in to smaller intervals as �� = 0, �� =

�, �� = ��, � = 1,2, . . . , �, � = �/�. Using the above discretization, we can write the 
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Eq. (1) as  

��� ≡ �����(�,  ��) + ���(�)��(�,  ��) − ��(�) +
�

�
� � (�, ��) = �(�,  ��) −

�

�
�(�,  ����)    (4)  

with  � ( �, 0) = ��,  s ∈ (0, 1), �(0, ��) = �(1, ��) = 0 

The equation that defines the roots representing the solution of Eq. (1) is  

����(�) + ���(�)�(�) − �
�

�
+ �(�)� = 0      (5) 

Two continuous functions produced by Eq. (5) are  

��(�) = −
���(�)

���
− �

��(�)�
�

�
�

��
+ �

���(�)

���
�

�

      (6) 

��(�) = −
���(�)

���
+ �

��(�)�
�

�
�

��
+ �

���(�)

���
�

�

      (7) 

These two real solutions characterize the boundary layers at s = 0 and s = 1.   

Let    �� = − ���
�∈[�,�]

��(�)   and  �� = ���
�∈[�,�]

��(�). 

Utilizing the two fitting factors to effectively regulate the parameters in Eq. (4), we 

have   

���� ≡ ����������,  ��� + ��������������,  ��� − ������ +
�

�
� ����,  ��� = ����, ��� −

                
�

�
� (��, ����)        (8)  

with   ����, 0� = ��, s� ∈ (0,1), �(0, �� ) = �(1, �� ) = 0 

The error caused by local truncation of the scheme Eq. (8) is �� = �( �, ��) − �(�, ��), 
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where �(�, ��) is the solution of Eq. (1), �� is the truncation error in the time 

discretization at instant ��. 

Lemma 1.3 Suppose �
���(�,�)

��� � ≤ C, for (s, t) ∈ (0,1), j = 0, 1, 2. Then measure of the 

discrepancy between the exact solution and the numerical approximation at a specific 

time step is ‖e�‖� ≤ Cτ�. 

Proof. ����, ��� − ����, ����� = �[����������,  ��� + ��������������,  ��� − 

                                                  ���������,  ��� − ����, ���    (9) 

Also �(�, ����) = �(�, ��) − ���(�, ��) + ∫ (���� − �)���(�, �)��.
��

����
  (10) 

Using Eq. (8) in Eq. (10), 

�� ��, ��� − ����, ����� = �[����������,  ��� + ��������������,  ��� −

                                              ����� �� ��,  ��� −  ����,  ���] + �(��)   (11) 

Subtracting Eq. (11) from Eq. (9) gives 

 ��(��) = �(�),        ��(0) = ��(1) = 0.      (12) 

With this we can get the desired estimate using application of the Lemma 1.2 on the 

operator L. 

1.3.2 Spatial discretization 

Now, let N subintervals be assigned to the space interval [0, 1] such that �� = 0, ��=1, 

s� = �� + �ℎ, � = 1, . . . , �   where ℎ = �� − ����. 

The problem aims to find a numerical solution in the form of a trigonometric spline 
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function for the jth segment, denoted by ��(� ), has the form 

��(�) = �̑� + �̑�( � − �� ) + �̑� ��� � (� − ��) + �̑� ��� � (� − ��)              (13) 

for � = 0, 1, . . . , � − 1, where �̑�, �̑�, �̑� and  �̑� are constants and � is free parameter. 

Let the exact solution be �(�) and �� approximate �(��) which is obtained by 

trigonometric spline ��(�). The spline traverses through the points (��, ��) and 

(����, ����).  The spline ��(�) fulfils the interpolation requirements at �� and ���� as 

well as the first derivative continuity requirements at the common nodes (��, ��). The 

trigonometric function �(�) of class ��[�, �] interpolates �(�) at the grid points ��, for 

� =  0,1, 2, … , �, reliant upon a parameter �, and becomes a regular spline �(�) in [a, 

b] as � → 0. 

Let     ��( ��) = ��, ��( ���� ) = ����,   ��
����� = ��and��

�( ����) = ���� 

Then by simple calculations, we get  

�̑� = �� +
��

��
, b̑� =

��� � − ��

ℎ
+  

��� � − ��

��
, c̑� =

�� ��� � − ����

�� ��� �
, d̑� = −

��

��
 

where � = �ℎ, for � =  0,1, . . . , �. 

Using the condition ��
�(��

�) = ��
�(��

�), we get the following relation 

����� + 2��� + ����� =
�

�� (���� − 2�� + ����)  for � = 1,2,3, . . . , � − 1.  (14) 

here  � =
��

�� +
�

� ��� �
, � =

�

�� −
��� �

� ��� �
, �� = ���(��, ��) 

Rearranging the Eq. (8), 
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����������, ��� = �̑���������,  ��� + �̑( ��)�( ��, ��) + �(��,  ��) −
1

�
�( ��,  ����) 

where  �̑(�) = −���(�)�(�), �̑(�) = �(�) +
�

�
 

By using second derivatives of spline, we have  

������ = �̑(��)��(��,  ��) + �̑(��)�( ��, ��) + �(��, ��) −
�

�
�( ��, ����)  (15) 

Let ��(����, ��) ≅
�(����,��)���(��,��)���(����,��)

��
     (16) 

��(����, ��) ≅
���(����,��)���(��,��)��(����,��)

��
     (17) 

��(�� , ��) ≅ �
1 + 2�ℎ��̑��� + �ℎ�3�̑��� + �̑����

2ℎ
� �(���� ,  ��)

− 2� ��̑��� +  �̑�����(�� , ��) 

− �
1 + 2�ℎ��̑��� − �ℎ��̑��� + 3�̑����

2ℎ
� �( ���� , ��) 

          + � ℎ ��( ���� ,  ��) −
�

�
�(���� , ����) − �(���� ,  ��) +

�

�
�(���� , ����)� (18) 

Using the Eqs. (15) - (18) in Eq. (14), we obtain the following tri-diagonal system  

�������� , ��� + �� ���� , ��� + �������� , ��� = ��,�   for  j = 1,2, . . . , � − 1.  (19) 

Here        

�� = − ���� −
3

2
r �̑��� ℎ + � �̑�ℎ����̑��� + 3�̑���� − 2� �̑�� ℎ��̑��� +

�

2
�̑���ℎ

+               � �̑���ℎ� − ℎ� �̑� 
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�� = 2���� + 2� �̑��� ℎ − 4� �̑�ℎ����̑��� + �̑����  − 2� �̑���ℎ + 2� �̑�ℎ� 

�� = −���� −
�

2
�̑��� ℎ + � �̑�ℎ���3�̑��� + �̑���� + 2�ℎ�� �̑��̑��� +

3

2
r �̑���ℎ

+ � �̑���ℎ� + ℎ� �̑� 

��,� =  -ℎ� ��� − 2�� �̑�ℎ�(����,� −
1

�
����,���) + 2�(��,� −

1

�
��,���)

+ �� + 2�� �̑�ℎ�(����,� −
1

�
����,���)� 

Fitting factors can be acquired using Eq. (6) and Eq. (7) in (19) as 

�� =
− ��(��) +

�

�
� �ℎ

4
�

�
�

����(��)�

���
�

���ℎ �
��(��)�

�
� ���ℎ �

��(��)�

�
�

�        for � = 1,2, . . . , � 

�� =
��(��)�

�

�
��

����(��)
����ℎ �

��(��)�

�
� + ���ℎ �

��(��)�

�
��       for � = 1,2, . . . , �  where � =

�

��
. 

1.4Convergence Analysis 

This new method has a local truncation error of  

��(ℎ) = [−1 + 2(� + �)]ℎ�����
��

+ ���4��� +
1

3
� � −

2�

3
� �̂���

��� + (−1 + 12�)
��

2
��

��� ℎ� + �(ℎ�) 

Then for � =
�

��
, � =

�

��
, � =

��

����
, �(ℎ) = �(ℎ�). 

with boundary conditions, matrix form of Eq. (19) can be 

KRONIKA JOURNAL(ISSN NO-0023:4923)  VOLUME 24 ISSUE 12 2024

PAGE NO: 722



 

 

(� + �)� + �� + �(ℎ) = �    (20) 

where 

� =

⎣
⎢
⎢
⎢
⎢
⎡
2����   − ����         0          0     …       0
−����   2����     2����      0    …        0
  0     − ����      2����  − ����  …      0 
…           …            …          …      …     …
…           …            …          …      …     …
0             …           0    − ����    2���� ⎦

⎥
⎥
⎥
⎥
⎤

 

� =

⎣
⎢
⎢
⎢
⎢
⎡

����         0         0       …       0
������         0      …         0
  0        ������      …        0 

…       …      …         …      …       …
…       …      …        …       …       … 
  0      …      …         0      ����  ����⎦

⎥
⎥
⎥
⎥
⎤

 

�� = −
3

2
r �̑��� ℎ + � �̑�ℎ����̑��� + 3�̑���� − 2� �̑�� ℎ��̑��� +

�

2
�̑���ℎ + � �̑���ℎ�

− ℎ� �̑� 

�� = 2� �̑��� ℎ − 4� �̑�ℎ����̑��� +  �̑����  − 2� �̑���ℎ + 2� �̑�ℎ� 

�� = −
�

�
�̑��� ℎ + � �̑�ℎ���3�̑��� + �̑���� + 2�ℎ�� �̑��̑��� +

�

�
r �̑���ℎ + � �̑���ℎ� +

ℎ� �̑�    for � = 1,2, … , � − 1 

�� = [��� + (−���� + ��)��, ���, ���, … , ����� + (−���� + ��)�� 

��� = -ℎ� ��� − 2�� �̑�ℎ�(����,� −
1

�
����,���) + 2�(��,� −

1

�
��,   ���)

+ �� + 2�� �̑�ℎ�(����,   � −
1

�
����,   ���)� ,   � = 1,2,3, … , � − 1. 

� = ���
�, ��

�, … , ����
� �

�
, �(ℎ) = [��, ��, ��, … , ����]� 
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Let � = [��
�, ��

�, … , ����
� ]� be the solution of Eqs. (1) - (2), we have 

(� + �)� + �� = �     (21) 

Let ��
� = ��

� − ��
�, � = 1,2, … , � − 1 be the error of discretization and � =

���
�, ��

�, … , ����
� �

�
 

Using Eq. (20) and Eq. (21), we get       (� + �)� = �(ℎ)   (22) 

Let ��� be the sum of the elements of ��� row of (A+B), then 

��� = ���� +
�

�
�3�̑��� − �̑����ℎ − ℎ� �̑� + �� �̑��� + 2��̑��ℎ� − � �̑�ℎ����̑��� +

3�̑���� + 2� �̑�� ℎ��̑���  for � = 1 

��� = ℎ��r����� + 2ρ��� + r������ + 2ℎ�ρω�̑������� − ������, � = 2, … , � − 2 

��� = ���� +
�

�
��̑��� − 3�̑����ℎ − ℎ� �̑� + �� �̑��� + 2��̑��ℎ� − � �̑�ℎ����̑��� +

�̑���� − 2� �̑�� ℎ��̑���  for � = � − 1 

Let ��∗ = ���
�����

|��(�)|,  ��
∗ = ���

�����
|��(�)|, and  ��∗ = ���

�����
|��(�)|,  ��

∗ =

���
�����

|��(�)|. 

Since 0 < �� << 1  and  �� ∝ �(ℎ),it is clear that forℎ, (� + �) is monotone.  

As (� + �)�� exists and (� + �)�� ≥ 0, from Eq. (22), we have  

‖�‖ ≤ ‖(� + �)��‖. ‖�‖.     (23) 

Let (� + �)�,�
�� be the (�, �)�� element of (� + �)�� and  

‖(� + �)��‖ = ���
�������

∑ (� + �)�,�
�����

���   and   ‖�(ℎ)‖ = ���
�������

���(ℎ)� (24) 
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Since (� + �)�,�
�� ≥ 0  and  ∑ (� + �)�,�

��. ��� = 1,  � = 1,2,3, . . . , � − 1���
��� . 

(� + �)�,�
�� ≤

�

��
<

�

���(����)��∗������∗
� �

, � =  1, . . . , N − 1 (25) 

Furthermore,  ∑ (� + �)�,�
�����

��� ≤
�

���
�������

��
<

�

��(�(���)��∗)
.      (26) 

Using Eqs. (25) - (26) in Eq. (23), we get            ‖�‖ ≤ �(ℎ�). (27)                                                 

Thus, from Eq. (12) and Eq. (27), we obtain  

���
�����,�����

���
� − ��

�� ≤ �(ℎ� + �)      (28)  

which demonstrates that our method exhibits fourth-order convergence in space and 

first order in time for � =
�

��
, � =

�

��
, � = −

�

����
 on uniform mesh. 

1.5Numerical Results 

Conducted In order to computationally demonstrate the proposed method, we examine a 

class of SPPDE that consists of two parameters. For each mesh node, we determine the 

maximum absolute error (MAE) by  ���,��

�,� = ���
�����;�����

�����,��

�,� �
�,�

− ����,��

��,���
�,�

� 

when exact solution is unknown. 

Example 1.1��
���

��� + ��(1 + �)
��

��
− �(�) −

��

��
= 16��(1 − �)�, 

where�(�, 0 ) = 0∀� ∈ ( 0,1); �( 0, � ) = 0, �( 1, � ) = 0 for � ∈ [0,1]. 

The results obtained from Tables 1.1 and 1.2 are compared with the corresponding 

values in Tables 1 and 5 of  [15] for the different parameter ��and ��.  The result profile 

at the specified nodes is shown in Fig. 1.1 for Example 1.1. 
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Example 1.2��
���

��� − (2 − ��)
��

��
− ��(�) −

��

��
= −10������(1 − �) 

where�( �, 0) = 0,∀� ∈ ( 0,1), �( 0, �) = 0, �( 1, �) = 0, for � ∈ ( 0,3). 

Table 1.3 shows the MAEs for range of �� and fixed �� in comparison with the results 

of [18]. The result profile at the specified nodes is shown in Fig. 1.2 for Example 1.2. 

Example 1.3 

��

���

���
+ ��(1 + �( 1 − �) + ��)

��

��
−

��

��
− (1 + 5��)� = �( 1 −  �)(�� − 1) 

where�( �, 0 ) = 0  ∀� ∈ ( 0,1), �( 0, �) = 0, �( 1, � ) = 0, for � ∈ [0,1]. 

The comparison of the MAEs is shown in Tables 1.4 for range of ��and fixed �� with 

the results of [4]. The result profile at the specified nodes is shown in Fig. 1.3 for 

Example 1.3. 

Table 1.1 Comparison of MAEs with �� = 2��and K(=N) for Example 1.1. 

��\� 8 16 32 64 128 256 512 

Our results 

2�� 1.15E-2             2.92E-3 7.39E-4     1.86E-4      4.68E-5      1.17E-5 2.93E-6       

2�� 3.46E-2       1.02E-2      2.78E-3     7.24E-4      1.84E-4      4.66E-5 1.17E-5       

2�� 6.25E-2       2.63E-2      8.85E-3     2.58E-3 6.97E-4      1.81E-4 4.61E-5 

2�� 5.64E-2       3.23E-2      1.67E-2     6.76E-3      2.23E-3      6.47E-4 1.74E-4 

2��� 5.49E-2       1.85E-2      5.60E-4 1.20E-2     8.08E-3 4.23E-3      1.70E-3 

2��� 5.91E-2       1.50E-2      5.89E-3     3.71E-3      2.91E-3      2.02E-3 1.06E-3 

2��� 6.29E-2       1.98E-2      6.12E-3     2.55E-3 1.28E-3      8.91E-4 7.23E-4 

2��� 6.48E-2       2.34E-2      9.41E-3     3.76E-3      1.60E-3      7.33E-4 3.48E-4 
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2��� 6.48E-2       2.34E-2      9.41E-3     3.76E-3      1.60E-3      7.33E-4 3.48E-4 

Results in [15] 

2�� 0.17E-1      0.71E-2       0.31E-2      0.14E-2     0.68E-3      0.33E-3 0.16E-3 

2�� 0.30E-1 0.11E-1 0.45E-2 0.19E-2 0.86E-3 0.41E-3 0.20E-3 

2�� 0.51E-1 0.19E-1 0.72E-2 0.29E-2 0.12E-2 0.58E-3 0.28E-3 

2�� 0.62E-1 0.32E-1 0.13E-1 0.49E-2 0.19E-2 0.81E-3 0.37E-3 

2��� 0.62E-1 0.34E-1       0.17E-1      0.82E-2     0.32E-2      0.12E-2 0.49E-3 

2��� 0.62E-1 0.34E-1       0.17E-1      0.88E-2     0.44E-2      0.20E-2 0.81E-3 

2��� 0.62E-1 0.34E-1       0.17E-1      0.88E-2     0.44E-2      0.22E-2 0.11E-3 

2��� 0.62E-1 0.34E-1       0.17E-1      0.88E-2     0.44E-2      0.22E-2 0.11E-3 

    

Table1.2 Comparison of MAEs with �� = 2��and N (=2K) for Example 1 

��\� 2� 2� 2� 2� 2� 2�� 

Our results 

2�� 0.549E-2       0.144E-2        0.369E-3           0.931E-4       0.234E-4 0.586E-5    

2�� 0.557E-2       0.144E-2        0.369E-3           0.931E-4       0.234E-4 0.586E-5   

2�� 0.557E-2       0.144E-2        0.369E-3           0.931E-4       0.234E-4 0.586E-5 

2�� 0.557E-2       0.144E-2        0.369E-3           0.931E-4 0.234E-4 0.586E-5 

2��� 0.557E-2       0.144E-2        0.369E-3           0.931E-4 0.234E-4 0.586E-5 

Results in [15] 

2�� 0.086E-1        0.039E-1       0.018E-1            0.092E-2      0.045E-2    0.022E-2 

2�� 0.075E-1        0.032E-1       0.015E-1            0.073E-2      0.036E-2    0.017E-2 

2�� 0.074E-1        0.032E-1       0.014E-1            0.071E-2      0.035E-2    0.017E-2 

2�� 0.074E-1        0.032E-1       0.014E-1            0.071E-2      0.035E-2    0.017E-2 
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2��� 0.074E-1        0.032E-1       0.014E-1            0.071E-2      0.035E-2    0.017E-2 

   

TABLE1.3 Similitude of MAEs for �� = 2��and N in Example 1.2 

�� ↓  � → 2� 2� 2� 2� 2� 

� → 1/10 1/20 1/40 1/80 1/160 

Our Results 

2�� 9.1680E-3          2.6628E-3             2.3183E-3           1.5931E-3       6.8094E-4 

2��� 1.1708E-2          2.9057E-3             9.0329E-4           6.4602E-4          5.8001E-4 

2��� 1.6118E-2           4.2474E-3             9.6329E-4           4.0205E-4          2.2189E-4 

2��� 1.7922E-2           5.0965E-3             1.2884E-3           3.9533E-4          1.9563E-4 

2��� 1.8449E-2           5.3770E-3             1.4355E-3           4.5694E-4          1.9543E-4 

Results in [18] 

2�� 0.7863E-2           0.4366E-2              0.2202E-2           0.8796E-3         0.2670E-3    

2��� 0.7863E-2             0.4370E-2              0.2295E-2           0.1174E-2         0.5706E-3    

2��� 0.7863E-2           0.4370E-2 0.2295E-2           0.1175E-2         0.5944E-3    

2��� 0.7863E-2             0.4370E-2              0.2295E-2           0.1175E-2         0.5944E-3    

2��� 0.7863E-2           0.4370E-2              0.2295E-2           0.1175E-2         0.5944E-3    

     

TABLE1.4 Similitude of MAEs for �� = 10�� in Example 1.3 

� →       64         128     256  512                                      

�� ↓ � →     1/2�       1/2�     1/2� 1/2� 

Our Results 

10�� 7.0053E-4            4.5344E-5           1.1392E-5   1.7946E-4         

10�� 7.0036E-4            4.5341E-5           1.1391E-5   1.7944E-4           

10�� 7.0895E-4            4.5490E-5           1.1410E-5   1.8059E-4           

10�� 8.4775E-4            4.7637E-5           1.1678E-5 1.9785E-4           
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Results in [4] 

10�� 0.96949E-3                 0.25231E-3              0.49906E-3 0.12824E-3       

10�� 0.98712E-3                 0.25485E-3              0.50049E-3 0.12853E-3       

10�� 0.95128E-3         0.25237E-3              0.50026E-3        0.12781E-3       

10�� 0.96746E-3         0.25237E-3              0.50012E-3        0.12803E-3 

 

 

 

�� = 2��, �� = 2���� = 2��, �� = 2�� 

Figure 1.1 Result profile for Example 1.1 for diverse values of �� and �� with � =

64, � = 128 
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�� = 2��, �� = 2��                                                    �� = 2��, �� = 2�� 

Figure 1.2 Result profile for Example 1.2 for diverse values of �� and �� with � =

128 , � = 64 

 

�� = 10��, �� = 10���� = 10��, �� = 10�� 

Figure 1.3 Result profile for Example 1.3 for diverse values of �� and �� with � =

32, � = 128. 

1.6Conclusion 

The desire to enhance accuracy and convergence in solving SPPDEs drives our efforts 

to develop a uniformly convergent numerical scheme of higher order. We proposed a 

scheme to examine the solution of a SPPDE of diffusion-convection type with two 

small parameters. We partially discretized the continuous problem in the temporal 

direction using the implicit Euler scheme. Use of the trigonometric spline method to 

discretize space on a constant mesh led to a fourth order convergence in space. 

Theoretical analysis to obtain the stability and error estimate shown that the proposed 

method is unconditionally stable.  The convergence analysis has demonstrated that the 
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method exhibits parameter uniformity. The accuracy of the scheme is determined by 

comparing it with some existing methods available in literature.  For a given value of 

��, we find that the MAEs in Table 1.1,1.3 and 1.4 remains unchanged as ��approaches 

to zero. It demonstrates that the method in use is up to a level of precision of ��. For 

fixed ��, ℎ and �,  Table 1.2 also confirms the ��- uniform convergence. 
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