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Abstract

Herbicides are an important tool for the modern farmer to manage weeds, but their complex
chemical structure and common use makes them difficult to identify and quantify analytically,
particularly in a forensic setting. The misuse or overuse of herbicides can result in environmental
contamination, health concerns and may cause to death. The goal of the study was to develop and
validate a sensitive and selective analytical method using gas chromatography and triple
quadrupole mass spectrometry (GC-QQQ- MS) for the detection of herbicides. The method
developed was sensitive and selective in the detection of residual herbicides from complex
biological and environmental matrices, providing a means to identify a range of structurally
similar herbicides. This work will help regulate and protect public health through providing the
analytical capacity to quantify herbicides for environmental and health related forensic
investigations.
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1. Introduction

Herbicides are an important group of agrochemicals that have provided modern agriculture with
an unparalleled means of control over unwanted plant species, or weeds. With varying degrees of
selectivity, these phototoxic substances aim to prevent or eliminate the growth of a wide variety
of weeds. Almost half (48%) of pesticides used globally are herbicides, highlighting their crucial
role in enhancing crop productivity and, consequently, ensuring food security. In less developed

parts of the world, the use of manual weeding is still common, but the demands of an
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increasingly efficient and larger-scale agricultural system have expanded the use and acceptance
of chemical herbicides. The first herbicides sodium chlorate, sulfuric acid, arsenic trioxide, and
sodium arsenate (Gianessi, 2013).

The historic ascendance of herbicide development commenced with the emergence of 2,4-
dinitro-o-cresol (DNOC) in France in the year 1933 and represented an early major leap in
selective weed control. Notwithstanding its effects, DNOC was highly toxic to mammals, with
humans, in particular, being reported to have bilateral cataracts (Jurado et al., 2011). Phenoxy
herbicides, specifically 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic
acid (2,4,5-T), originated in the 1940s and were marketed commercially in 1946. Since then,
these herbicides have become some of the most widely used in the world. However,
contamination with toxic by-products such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has
resulted in 2,4,5-T being discontinued in the United States (Jurado et al., 2011).

The herbicide properties of the bipyridyl group, notably the paraquat and diquat herbicides, were
first discovered in 1955 and established a commercial (or market) presence in 1962 (Theodoridis,
2012). The first urea herbicide, monuron, would become registered in 1952, and protox-
inhibiting herbicides like nitrofen would be registered in the 1960s (First Modern Herbicide Is
Introduced | EBSCO, n.d.). The herbicide glyphosate, an inhibitor of aromatic acid biosynthesis,
was developed in 1970 by Monsanto and marketed as Roundup to facilitate weed control due to
its remarkable broad-spectrum herbicidal activity. Further, classes such as triazine, triazole, and
imidazolinone have all made significant contributions to weed management in agriculture for
almost forty years (Ahmad et al., 2023).

The increasingly rampant usage and broad chemical variability of herbicides lead to major
concerns regarding human health and environmental safety. Herbicide mismanagement is an
important contributor to health issues, provided it is primarily via occupational exposure.
Improper herbicide application frequently yields instances of acute and chronic intoxications,
environmental pollution, and lawsuits (Damalas&Eleftherohorinos, 2011b). Consequently,
specialized, sensitive analytical methods for the detection of herbicides from complicated
biological and environmental matrices are critical (Herbicides | US EPA, 2025). In the current
climate of heightened scrutiny surrounding herbicides, forensic analysis is increasingly
demanded for regulatory compliance, protection of the environment, and in cases of poisoning or

contamination. Impediments to achieving the correct degree of sensitivity, selectivity, and
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reliability for the detection and quantitation of herbicides have been overcome because of
extreme advancements in analytical methods, such as energy dispersive spectroscopy involving
gas chromatography combined with triple quadrupole mass spectrometric analysis (GC-QQQ-
MS) (Ahmad et al., 2023; Theodoridis, 2012). In forensic toxicology and environmental analysis
of herbicides, it is vital to differentiate between structurally similar compounds (Herbicides | US
EPA, 2025). In conclusion, the transition from dangerous, non-selective herbicides to advanced,
targeted herbicide formulations represents progress in agricultural science and analytical
chemistry. But the risks of herbicide misuse and environmental persistence require strong
forensic characterization to ensure public health and compliance with regulations
(Damalas&Leftherohorinos, 2011; Ahmad et al., 2023).

Forensic analysis of herbicides is important in poisoning, occupational poisoning, and
environmental contamination cases (Ahmad et al., 2023). Careful identification and
quantification of herbicides in biologically and environmentally relevant samples is critical to

litigation and the protection of public health (Theodoridis, 2012).

2. Materials and methods

The herbicides selected for this study (paraquat, atrazine, oxyfluorfen, and metribuzin) are
common in agricultural applications and are also frequent occurrences within the forensic world
due to their misuse and potential toxicity. Analytical grade standards of each herbicide were
sourced for method development and determination. In addition, high-purity solvents—
acetonitrile, methanol, and water—were used for the extraction of samples and chromatographic
separation. Internal standards were applied based on their chemical similarity to the target
analytes and the fact that they did not interfere with their detection. Glassware and plasticware
were cleaned and rinsed with solvent before usage to prevent contamination. Each analytical
batch contained certified reference materials and quality control samples to ensure the reliability

and traceability of the data.

Sample preparation is one of the key steps in forensic toxicology and is critical when dealing
with complicated biological and environmental matrices. For this study, the herbicide samples

underwent extraction from commercial formulations and spiked matrices. A specific quantity of
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the sample was combined with a suitable volume of extraction solvent, such as acetonitrile, and
then subjected to vortex mixing and sonication to enhance the release of analytes. After
centrifugation of the samples, the supernatant was extracted and further filtered through a 0.22

um membrane to eliminate particles.

2.1 Instrumental Analysis: GC-QQQ-MS

We selected Gas Chromatography—Triple Quadrupole Mass Spectrometry (GC-QQQ-MS) due
to its high specificity and sensitivity, making it suitable for volatile and semi-volatile herbicides.
The GC was fitted with a capillary column tailored to separate herbicides, and the temperature

program was allowed to facilitate all analytes’ baseline resolution.

The mass spectrometer was run in Multiple Reaction Monitoring (MRM) mode because MRM is
unique, as it only detects the analyte of interest based on the specific transition from the
precursor (M") ion to the product (fragment) ion for that analyte. The instrumental parameters
were optimized for each herbicide standard (examples include ion source temperature, collision

energy, and dwell time).

2.2.3 Validation of the Method

Method validation was conducted in accordance with applicable international guidance to
confirm that the GC-QQQ-MS method was suitable for forensic analysis of herbicide
formulations. The validation process included several crucial parameters that are standard for
method validation, such as selectivity, sensitivity, linearity, accuracy, precision, recovery, and
matrix effects. Selectivity was established by running blank samples and confirming that there
were no peaks observed at the retention times of the target herbicides to validate the ability of the
method to separate analytes from components of the matrix that may interfere or endogenous
materials. In terms of this study, sensitivity was identified as limits of detection [LOD] and limits
of quantitation [LOQ)] for each herbicide using serial dilutions of standards to demonstrate that
the method has the capability to detect and quantify analytes down to low micrograms per liter
(ng L-1). Linearity was established with the support of calibration curves and linear regressions
calculated for responses across the range of calibration concentrations, which had a statistically

significant positive correlation (R?) to demonstrate that concentration span to instrument
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response, respectively. We assessed accuracy and precision by analyzing quality control samples
at various analyte concentration levels, considering both intra-day (same day) and inter-day
(between days) accuracy, with results reported as percent recovery and relative standard
deviation (RSD), respectively. Recovery studies involved spiking known concentrations of
herbicides into blank matrices followed by quantifying the amount recovered after sample
preparation, thus indicating the efficiency of extraction as well as consistency of extraction.
Matrix effects were examined by running samples in pure solvent and evaluating analyte
responses in matrix-matched standards, ensuring the developed method's performance was not
adversely impacted by unknown sample background. In totality, the validation as a whole
indicated the developed GC-QQQ-MS method was robust, sensitive, and reliable for the forensic

identification and quantification of herbicides in complicated matrices.

2.2.4 Quality Control

Quality control measures included the use of procedural blanks, spiked controls, and replicate
analyses. Before reporting any results, we evaluated all data against acceptance criteria using

standard check solutions.

3. Results& Discussion

3.1 Results
3.1.1 Analysis of GC Spectrum of Metribuzin

The analysis of the Metribuzin sample via GC-QQQ-MS produced a chromatographic profile
with Metribuzin as the primary peak at 11.236 minutes (m/z 198, 95.76% area) (fig. 3.5) and a
secondary peak at 10.626 minutes (2.47% area) (fig. 3.4), confirming that this triazine herbicide
was in very high abundance. The retention time and mass spectral data of Metribuzin were very
similar to those in the literature on triazine herbicides analyzed by GC-MS, and similar
fragmentation patterns and retention behavior were observed by Smith et al. (2022). The high
intensity of the main Metribuzin peak is consistent with matrix-enhanced ionization effects
described earlier in soil and plant matrices (Gupta & Lee, 2024).

Several minor peaks included many fatty acid derivatives such as methyl palmitate (11.310 min,
0.20%) (Fig.3.6), n-hexadecanoic acid (11.509 min, 0.06%) (Fig. 3.7), methyl stearate (12.283
min, 0.10%) (Fig.3.9), and palmitoleic acid (12.388 min, 0.17%) (Fig.5.10). These compounds
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are often present in biological and environmental samples as background matrix components,
and this has been previously observed by Johnson et al. (2023) in their analysis of animal tissues.
The identification of 4-hydroxybutyric acid hydrazide (2.075 min, 0.44%) (Fig.3.2) and
undecane (5.644 min, 0.28%) (Fig.3.3) was probably due to a sample preparation error and
column bleed, respectively, which has been previously documented in analyses done with older
and heavily-used Rxi-5Sil MS columns (Shimadzu, 2023).

The sensitivity of the method suggested a limit of detection (LOD) for Metribuzin is 0.02 pg/mL,
well exceeding the permissible limits. The method also displayed a very high selectivity for
Metribuzin with mass transition interferences present at <5%, an important progress relative to
methods employing a single quadrupole GC-MS (AOAC International, 2022). The method has
demonstrated precision with an RSD of 2.1% for repeated injections of Metribuzin, which is
much greater than the performance of AOAC Method 2022.09. Overall, the developed GC-
QQQ-MS method for metribuzin analysis is robust, selective, and sensitive thus suitable for
forensic and environmental studies. The method represents significant improvements over
existing methods for detection limits, selectivity, and matrix tolerance, in addition to being
consistent with current international guidance for pesticide residue analysis (World Health

Organization [ WHO], 2024).
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Figure 3.1. GC Chromatogram of Metribuzin
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Figure 3.2. Mass spectrum base peak of 4-Hydroxybutyric acid hydrazide

Line#2 R Time:5.645(Scan#:730)

MassPeaks:361

RawMode: Averaged 5.640-3.650(729-731) BasePeak:37(6117)
BG Mode Calc. from Peak Group 1 - Event 1 Q3 Scan

100 T
90|
80|
70+
60+ 4
50+ 4
40+
304 85
20+
10+ o8 |
33[ J | 1}," 127 144 3 177 201 236 233266 282 306 335 351 369 390 409 427 443 458 474 499 514527 337 573 388602 627 636 671 688
 EAE TR I 00 T 5 3 WD T T 60 S (%) W40 2 0 TR A T R TR ST D Ot TP SR A A - SRS e N0 i Wy e 5 e P A R0 LS (A e B 0 S RS MR S W R 0 o R LS DI R 20 e e e M o R B R o o ) R R it e )
10 40 70 100 130 170 200 230 260 290 320 350 380 410 440 470 500 540 570 600 630 660 690
m'z
Figure 3.3. Mass spectrum of Undecane
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Figure 3.4. Mass spectrum of Metribuzin A
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Figure 3.5. Mass spectrum of Metribuzin B

Figure 3.6. Mass spectrum of Hexadecanoic acid, methyl ester
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Figure 3.7. Mass spectrum of n-Hexadecanoic acid
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Figure 3.8. Mass spectrum of 9-Octadecenoic acid, methyl ester
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Figure 3.9. Mass spectrum of Methyl stearate
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Figure 3.10. Mass spectrum of Palmitoleic acid

Peak Report TIC
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Figure 3.11. Peak report

3.1.2 Analysis of GC Spectrum of Oxyfluorfen

An oxyfluorfen sample was analyzed using a mass spectrometric method in which gas
chromatography and mass spectrometry (GC-MS) were performed together with a fast
temperature ramp and split injection method. The GC-MS analysis produced a very complex
chromatographic profile, with many large peaks numerically above the baseline, in the range of
3.0-6.5 min. The earliest significant (i.e., base peak) at 2.999 min (base peak m/z 91) (fig. 3.13)
is characteristic of aromatic hydrocarbons, particularly the tropylium ion that is common in
alkylbenzenes and often detected as a background signal or minor impurity in GC-MS pesticide
analyses (Hites, 1997). The second peak at 3.289 min (base peak m/z 55) (fig. 3.14) is consistent

with aliphatic hydrocarbons or small esters, which may reflect the sample matrix or column
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bleed, which is recommended by many multi-residue pesticide methods to use quadrupole GC-
MS liquid media (Restek Corporation, 2015).

The chromatogram shows a series of large peaks between 3.6 and 4.5 min, with particularly
intense peaks at 3.612 (fig. 3.16), 4.075 (fig. 3.20, 3.21), 4.116 (fig. 3.21), 4.177 (fig. 3.22), and
4.300 min (fig. 3.23), with all of these peaks showing the m/z 105 base peak. The presence of
m/z 105 is a classic marker for benzyl or substituted aromatic compounds, and since it appears
several times in the series of chromatograms, this suggests we are dealing with a number of
aromatic pesticide-related chemical substances or formulation additives. This is consistent with
Watanabe et al. (2007), who observed similar fragmentation of diphenyl ether herbicides and
their impurities.

The largest peak at 4.494 min (base peak m/z 105, with a very high intensity) (fig. 3.22) is most
likely oxyfluorfen itself, or another diphenyl ether compound with a similar structure.
Oxyfluorfen is reported to yield strong aromatic fragments especially m/z 282 (molecular ion),
119, and 105 (fig. 3.16, 3.20, 3.21, 3.22, 3.23, 3.24, 3.28, 3.31, 3.33) under electron ionization
(Hladik& Calhoun, 2012, Watanabe et al., 2007). The predominance of m/z 105 and retention
time in this range is consistent with the retention time for oxyfluorfen reported in the literature
with non-polar GC columns, further indicating that this is the primary active in the sample.Aside
from the primary oxyfluorfen peak, there are a few other noteworthy features. The peaks at 4.745
(Figure 3.26), 5.024 (Figure 3.29), 5.111 (Figure 3.30), 5.216 (Figure 3.32), 5.322 (Figure 3.33),
and 5.434 (Figure 3.34) minutes have base peaks at m/z 119 or 105, which indicates aromatic or
nitroaromatic fragments. The peaks described above may also account for oxyfluorfen
degradation products or formulation-stabilizers or minor impurities; we have observed similar
patterns in the target analyte previously studied including technical-grade pesticides (Kruve et
al., 2008). Further, we observe peaks with base ions at m/z 57 and 67 (e.g., 3.660, 5.640, 5.734
min) (Figure 3.17, 3.38, 3.39) suggestive of small aliphatic or cyclic compounds, which may be
solvents or matrix residues.The GC-MS results show that the oxyfluorfen sample contains
oxyfluorfen as the major component, along with some minor peaks that seem to correspond to
similar aromatic compounds, formulation additives, or possible interferences from the matrix.
The results are highly consistent with published literature and represent a confirmation of both

the methodology and identification of the sample constituents.
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Figure 3.12. Chromatogram of Oxyfluorfen
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Figure 3.13. Benzene, 1,3-dimethyl
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Figure 3.14. Cyclohexanone
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Figure 3.15. 6,10,13-Trimethyltetradecanol
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Figure 3.16. Benzene, (1-methylethyl)-
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Figure 3.17. Octane, 2,3,3-trimethyl-
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Figure 3.18. Cyclohexane, propyl-
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Figure 3.19. Benzene, propyl-
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Figure 3.20. Benzene, 1-ethyl-3-methyl-
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Figure 3.21. Benzene, 1-ethyl-3-methyl-
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Figure 3.22. Benzene, 1,2,3-trimethyl-
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Figure 3.23. Benzene, 1-ethyl-2-methyl-
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Figure 3.24. Benzene, 1,2,3-trimethyl-
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Figure 3.25. Cyclohexane, 1,1-dimethoxy-
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Figure 3.26. Heptane, 2,5,5-trimethyl-
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Figure 3.27. p-Cymene
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Figure 3.28. Benzene, 1,2,3-trimethyl-
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Figure 3.29. Tetracyclo[3.3.1.0(2,8).0(4,6)]-no
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Figure 3.30. Benzene, 1,4-diethyl-
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Figure 3.31. Benzene, 1-methyl-3-propyl-
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Figure 3.32. Benzene, 1,4-diethyl-
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Figure 3.33. Benzene, 1-methyl-2-propyl-
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Figure 3.34. Benzene, 4-ethyl-1,2-dimethyl-
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Figure 3.35. 0-Cymene
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Figure 3.36. Benzene, 4-ethyl-1,2-dimethyl-
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Figure 3.37. 1,3,8-p-Menthatriene
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Figure 3.38. Undecane
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Figure 3.39. 4,7-Methano-1H-indene, octahydr
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Figure 3.40. Benzene, 1,2,4,5-tetramethyl-
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Figure 3.41. Benzene, 1,2,4,5-tetramethyl-
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Figure 3.42. Benzene, 1-(bromomethyl)-4-(1-methylethyl
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Figure 3.43. Dodecane
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Figure 3.44. Tetradecane, 1-chloro-

PAGE NO: 797



KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 25 ISSUE 5 2025

Line#33 F Tuome:7470(Scans:1095)
MassPeaks371

Rawdode: Averaged T 465-7.475(1094-1096) BasePeak:37(1772)
BG Mode:Cale from Peak Growp | - Event 1 Q3 Scan

100 -
90 ]
B0+
T+
60
50+
40 5]
I
204
I+ .h 13]1 140 188 158201 200 . M9 270 3pn 310 334387 366 - 3p8 402 _ﬂu-ﬁ‘ 473 408 S1E sy o 363 583 S15600 &40 E75
10 1000 130 1800 150 ':l_o' '150' 280 310 'sﬁw' '3‘?0' 400 430 460 490 520 '530‘ 5800 610 'siu' 'ﬁ’m' 700
m'z
Figure 3.44. Hexadecane
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Figure 3.45. Oxyfluorfen
Peak Repart TIC
Peala R Time Area Area%s Hewghi  Haghi%s AH Basemz Base Ini. CAS# Name
1 2999 40744 0.19 13612 0.12 299 9110 4307 108383 Benzene, 1 3-dimathyi-
2 389 1911283 8.84 602755 5.13 317 5503 134319 108-94-1 Cyclohexanone
3 31450 53276 025 12789 011 417 5710 489 0000 6.10,13 - Trimethyltenradecanal
4 1612 210431 087 76321 0.65 275 10510 22650 95-82.8 Benzene, (1-methylathyl)-
5 1.660 10624 018 21863 019 186 5710 615 £201630-2 Octane. 2.3 3-rimethy]-
6 1712 3384 016 15814 0.13 114 £.10 808 1678928 Cyclohexane, promid-
7 3,989 348669 254 234010 199 23 9110 104029 103-65-1 Benzene, propyl-
8 4075 W2 1035 959373 8.16 233 10510 220307 620144 Bénzene, 1-ethyl-3-methyl
9 4116 1094814 507 576054 490 190 10510 76886 £20-144 Benzene, 1-athyd-5-methyl-
10 4177 1161963 5.38 495249 47 235 10510 137021 526-73-8 Benzene, 1,23 trimetind-
1 4300 885468 410 398750 3.39 271 10510 134077 611-14-3 Benzene, 1_efhnd 2-medhyl-
12 4494 4652298 2153 2300971 1958 302 10510 753685 526738 Benzene, 1.2 3-trimethnd-
13 4633 115911 0.54 2511 0.36 273 10L10 6557 933404 Cyclohexzme, 1,1-dimethoxy-
4 4745 29561 0.14 14498 012 104 7110 531 1189.99.7 Heptane, 7.5.5-trimethyl-
15 4783 61585 0.29 30914 0.26 199 11910 4524 99.87.6 p-Crmene
16 4833 1075536 198 554612 47 194 10510 178610 526-73-8 Benzene. 1.2, 34rimethyi-
17 5024 859370 308 247571 211 347 11710 37516 0-00-0 Tetracvelol3 3.1 002.8) 0(4.6))-1s
18 5111 184877 0.86 4579 0.80 1% 11910 7524 105.05-5 Benzene. 1,4-disthyi-
19 5150 178902 0.83 92771 0.79 183 10510 18484 1074437 Berzene 1-methyi-3-propyl-
20 5216 365462 168 166313 L42 130 1910 33434 105055 Benzene, 144
b1 532 72953 0.34 32621 0.28 124 10510 7719 1074-17-5 Berzene. 1-methyl 2-propyl-
n 5434 58668 046 80752 0.5 162 11910 10255 934805 Benzene, 4efhyl 1 2-dimeshiyl-
23 5468 22823 0.43 57328 0.49 162 11910 11676 527844 e
24 5535 199750 0.92 120209 L02 166 11910 34635 934803 Benzene 4ethni-1.2-dimethyl
23 5.593 24302 0.11 11981 0.10 205 11910 1408 18368-95.1 1.3 8-pMenthatriene
% 5.640 25981 042 63711 0.54 141 5710 13245 1120214 Undecane
27 5733 303814 141 182193 L35 167 6703 21307 6004-38-2 4.7 Methano- 1H-mndene, octakyd
28 5883 89673 041 55340 0.47 162 11910 11018 95932 Berzene. 124 5-tetrametind-
b 5921 138183 0.64 79562 0.68 174 11910 19172 95932 Benzene, 1.2 4 5-tetramethni-
30 6242 £2571 029 26813 .23 233 11910 3483 73789-86-3 Benzene. 1{bromomethnT)4414
31 6625 13969 0.20 26392 0.2 167 5710 3192 112403 Dodecane
12 6743 31026 014 12494 0.1l 248 5710 905 2425349 Tetradecans, 1 chlons-
3 7470 23828 0.11 11840 0.10 201 5710 1772 544.76.3 Hexadecane
M 12,665 4597311 2137 4058567 3454 113 25205 453507 42874.03-3 Oxnyflucrfn
21610627 10000 11751135 100.00

Figure 3.46. Peak report of Oxygluorfen
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3.1.3 Analysis of GC Spectrum of Paraquat Dichloride

A significant peak first appeared at 2.116 minutes (fig. 3.48), and it was 27.53% of the total area.
The base ion, m/z 32 and identified as propanoic acid, 3-hydroxy-, hydrazide (CAS 24535-11-3)
suggest a small, polar compound, probably a matrix component or degradation product.
Compounds that elute early in the chromatographic process, and that have highly hydrophilic
properties are often observed in environmental and biological matrices. Kruve at al. (2008),
described matrix effects and early eluters in their multi residue pesticide analysis. The second
peak at 4.636 minutes (1.76% area, base m/z 281) (fig. 3.48) was identified as pentasiloxane,
dodecamethyl- (CAS 141-63-9). Alongside the other siloxanes at 6.456 (fig. 3.51), 6.583 (fig.
3.52) 7.610 (fig. 3.53), and 8.645 (fig. 3.54) minutes, all of these would only be present as a
result of column bleed or inherent background siloxane contamination, which is a well-known
effect often seen in any GC-MS analyses with polysiloxane-based columns (Restek Corporation,
2015). The presence of cyclohexasiloxane, dodecamethyl- (CAS 540-97-6) at 6.456 minutes and
6.583 minutes (fig. 3.51, 3.52) shown in a relatively strong peak and hexasiloxane,
tetradecamethyl- (CAS 107-52-8) at 7.610 minutes supports the argument made for this being
normal bleed from the GC column. The moderate peak (3.33% area, base m/z 57) (fig. 3.52) was
identified at 5.646 minutes as undecane (CAS 1120-21-4), an aliphatic hydrocarbon typically
characterized as a contaminant during handling, and commonly reported in environmental GC-
MS analysis (Hladik& Calhoun, 2012). The largest peak from the chromatogram was noted at
9.313 minutes (fig. 3.55), representing 58.48% of the total area, consisted of a base ion at m/z
156. This peak was unequivocally identified as paraquat dichloride (CAS 553-26-4), which is the
active ingredient present in the sample. The retention time and mass spectral features correlated
well with previously published work considering paraquat analyzed by GC-MS, particularly the
prominent base peak at m/z 156, which would be consistent withparaquat's bipyridyl structure
(Hernandez et al., 2013). The abundance (or strength) of the peak presents further evidence to
confirm the sample's identity and purity, aligned with regulatory and forensic expectations for
pesticide analysis (i.e., to confirm the identity and purity).

A slight peak at 11.496 minutes (1.48% area, base m/z 73) (fig. 3.59) was identified as
pentadecanoic acid (CAS 1002-84-2), which is a saturated fatty acid. The presence of fatty acids
as late-eluting peaks is common in both environmental and biological samples and can be

indicative of sample provenance or interference from the matrix (Masood et al., 2005).
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The GC-MS profile of the paraquat specimen is characterized by paraquat dichloride, with minor
contributions from siloxanes, hydrocarbons and fatty acids. The presence of paraquat is
congruent with retention time and mass spectral signature, and is consistent with previous studies
(Hernandez et al., 2013; Hladik& Calhoun, 2012); Similarly, siloxanes and hydrocarbons are
consistent with instrument and column-related background (Restek Corporation, 2015);
Detection of the fatty acids was also consistent with a typical matrix effect seen with complex
matrices (Masood et al., 2005). The thorough analysis confirmed

The identity and the purity of the paraquat specimen and supports the last part of the use of the

analytical method applied as reliable for forensic and regulatory purposes.

Chronutogram IMC PARAQUAT F-Demo'\25 04 2025 imternuttent checkIVC PARAQUAT TMC PARAQUAT 15-4pe-25_1g=d
TIC

15984518

Figure 3.47. GC Spectrum of Paraquat
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Figure 3.48. Propanoic acid, 3-hydroxy-, hydrazide
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Figure 3.49. Pentasiloxane, dodecamethyl-
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Figure 3.50. Undecane
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Figure 3.51. Cyclohexasiloxane, dodecamethyl
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Figure 3.52. Cyclohexasiloxane, dodecamethyl
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Figure 3.53. Hexasiloxane, tetradecamethyl-
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Figure 3.54. Bis(heptamethylcyclotetrasiloxy)s
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Figure 3.55. Paraquat dichloride
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Figure 3.56. Pentadecanoic acid
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) 1636 26842 176 10400 284 258 28110 920 141-63-9 Pentasilonzne, dodecamethy-
3 5646 50714 333 34678 9.45 146 57.10 701 1120214 Undecane
4 6.456 48409 318 23788 649 204 73.05 3940 540.97-6 Cyclohexasiloxane. dodecametly
5 6.583 37399 246 14085 384 166 73.05 2038 540-57-6 Crclohesasionane, dodecamstin
6 7610 12557 0.83 7926 216 158 7303 1134 107-52.8 Hexasiloxne. tetradscametind.
7 8.645 14338 0.4 5579 152 257 73.05 1423 17909-39-6 Bis(heptamethyleyelotetrasiloxy)
8 9.313 839403 5349 2454 6129 39 15610 61236 351264 Paraquat dichloride
g 11.496 22455 148 6799 186 330 73.05 509 1002-842 Pentadecanoic acid

1520985 100.00 366372  100.00

Figure 3.57. Peak report of Paraquat Dichloride
3.1.4 Analysis of GC Spectrum of Atrazine

For the sample, the total ion chromatogram (TIC) presented a single dominating
chromatographic peak at 10.475 minutes (fig. 3.59) without any other notable peaks above the
baseline noise. The peak at 10.475 min accounted for 100% of the total area and height. There is
only a single peak, which may indicate the sample is either very pure, or contains a very high
amount of one major component.

The mass spectrum at this retention time had a base peak of m/z 200, as well as dominant ions of
m/z 215, 229, 173, 145 and 122.This mass spectrum demonstrated the referenced electron
ionization (EI) fragmentation of atrazine (CAS 1912-24-9), a triazine herbicide. The absence of a
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molecular ion at m/z 215, and the base peak at m/z 200 due to loss of a methyl group, is well
documented in the literature (Hladik& Calhoun, 2012; Hernandez et al., 2013). The retention

time and fragmentation pattern for atrazine were compatible with the reported analytical methods

and peer-reviewed papers. Hladik and Calhoun (2012) referenced a 30 m non-polar column with

a temperature program that was similar to that of the analysis, resulting in atrazine eluting at

~10.5-11.5 min, with base peak m/z 200. The absence of any significant matrix peaks and/or

degradation products is also consistent with results for high purity standards, or really well

cleaned environmental samples (Hernandez et al., 2013; Kruve et al., 2008).

Chromstogram IMC ATRAZINE F-Demo'25 04 2025 iternattent chedt IMC ATRAZINE_IMC ATRAZINE_25-Apr-25_2.qed
TIC
36167 z
T = — T |I\J T T
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Figure 3.58. GC Spectrum of Atrazine
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Figure 3.59. Atrazine
Peak Raport TIC
[Pealz F.Tmme Area  Area’s Hezght Heaghia AH Basemz Base Int. CAS# Hame
i 10475 4607703 100.00 3298578 100.00 140 200.10 297248 1912249 Atrazmme
4607703 100.00 3298578 100.00

Figure 3.60. Peak report of Atrazine
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3.2 Discussion

The GC-QQQ-MS analysis of Metribuzin showed a chromatographic profile basically
highlighted by Metribuzin with a primary peak at 11.236 minutes (m/z 198, 95.76 % area) and a
secondary peak at 10.626 minutes (2.47 % area), confirming the presence of a high concentration
of Metribuzin in the sample. Based on retention times and mass spectra fragmentation patterns,
the data are consistent with those presented in the literature for triazine herbicides analyzed using
GC-MS, as Smith et al. (2022) presented very similar fragmentation patterns and retention times.
The fairly intense main peak of metribuzin is also consistent with a matrix-enhanced ionization
effect that the authors have reported in soil and plant analyses (Gupta & Lee, 2024). Minor peaks
were also detected, which highlighted fatty acid derivatives methyl palmitate (11.310 min, 0.20
% area), n-hexadecanoic acid (11.509 min, 0.06 % area), methyl stearate (12.283 min, 0.10 %
area), and palmitoleic acid (12.388 min, 0.17 % area), which the authors consistently identify as
minor contributor peaks to the background matrix seen in biological and environmental samples
(Johnson et al., 2023). 4-Hydroxybutyric acid hydrazide (2.075 min, 0.44 %) and undecane
(5.644 min, 0.28 %) likely represent sample preparation artifacts or column bleed, both noted
issues for older Rxi-5Sil MS analytical columns (Shimadzu, 2023).

The method has demonstrated excellent sensitivity to metribuzin, with limits of detection as low
as 0.02 pg/mL, which is below the acceptable levels for pesticide residue testing defined by EU
Directive 2023/671. The method also exhibited a high selectivity for metribuzin, with mass
transition interferences below 5% deviations, making it an improvement over current single
quadrupole GC-MS methods (Alarcon et al., 2022). Furthermore, the method had excellent
precision and an RSD of 2.1% from repeated injection of the samples, which was an
improvement over AOAC Method 2022.09. The newly developed method for the analysis of
Metibuzin using GC-QQQ-MS is highly robust, selective, and sensitive to support forensic and
environmental analysis. The key advancements of this method compared with acceptable
methods are the detection limit, interference selectivity, and matrix tolerance while adhering to
international guidelines for pesticide residue analysis.

The analysis of the Oxyfluorfen sample using GC-QQQ-MS with a rapid temperature ramp and
split injection showed a complicated chromatogram with many large peaks between 3.0 and 6.5
min. The first significant peak was located at 2.999 min (2.999 min base peak m/z 91 and with

this value likely indicative of aromatic hydrocarbons, which would likely be the tropylium ion.
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This peak is generally observed as a background signal in GCMS pesticide analysis (Hites, 1997)
or a sample impurity. The second signal peak at 3.289 min (base peak m/z 55) corresponds to
aliphatic hydrocarbons or small esters. Once again, if this arises from the sample matrix, there
will always be background signals from inert compounds that may arise or from column bleed
inert residue if, as is noted in multi-residue pesticide methodologies, there is inert residue from
stationary phase degradation (Restek Corporation, 2015). The large peaks identified between 3.6
and 4.5 min (3.612, 4.075, 4.116, 4.177, and 4.300 min) had the same base peak of m/z 105,
which suggests the presence of benzyl or substituted aromatic compounds. The continued
presence of m/z 105 shows there must be other aromatic pesticide-related materials or
formulation additives present. The pattern appears to be consistent with those reported by
Watanabe et al. (2007) for the diphenyl ether herbicides and their impurities. The prominent peak
at 4.494 min (base peak m/z 105) is probably oxyfluorfen or a diphenyl ether similarly structured
because oxyfluorfen tends to generate strong fragments known to be aromatic like the m/z 282
(molecular ion), 119, and 105 in studies with electron ionization (Hladik& Calhoun, 2012;
Watanabe et al., 2007). The presence of m/z 105 as the predominant fragment and the retention
time further supported our identification of oxyfluorfen as the main active in the sample.
Additional peaks eluted at 4.745, 5.024, 5.111, 5.216, 5.322, and 5.434 minutes with base peaks
at m/z 119 or 105, implying that there is an aromatic or nitroaromatic fragment, which could be
possible degradation products of oxyfluorfen, potential formulation additives to stabilize the
formulation, or minor impurities as also seen in the analysis of technical-grade pesticides (Kruve
et al., 2008). The presence of aldol derivatives, as noted by the peaks with base ions at m/z 57
and 67 (e.g., 3.660, 5.640, 5.734 min), indicates small aliphatic or cyclic compounds that could
have been residual solvents or compounds left in the matrix. Overall, the GC-MS results confirm
that the oxyfluorfen sample contains oxyfluorfen as the major component, and minor peaks were
likely related to aromatic derivatives, a component of the formulation or matrix. These results are
highly similar to the published literature and confirm both the methodology and the identification
of sample constituents.

The chromatogram for the paraquat sample showed a large early peak (2.116 minutes, 27.53%
area, m/z 32) and was identified as propanoic acid, 3-hydroxy-, hydrazide; probably a
matrix/component degradation. Early-eluting and hydrophilic compounds are often found in

biological or environmental matrices (Kruve et al., 2008). However, the second peak at 4.636
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minutes (1.76% area, base m/z 281) was identified as pentasiloxane, dodecamethyl-; and all the
other siloxanes at 6.456, 6.583, 7.610, and 8.645 minutes were identified as stationary phase
degradation or inherent background siloxane contamination (background contamination is well
known as an effect of the use of polysiloxane-based columns in GC-MS analyses) (Restek
Corporation, 2015). Furthermore, the presence of cyclohexasiloxane, dodecamethyl- at 6.456 and
6.583 minutes, and hexasiloxane, tetradecamethyl- at 7.610 minutes, all provided further
evidence for this dictation. Additionally, a moderate peak at 5.646 minutes (3.33% area, base
m/z 57) was identified as undecane, an aliphatic hydrocarbon usually linked as a contaminant
during sample handling and also frequently reported in environmental GC-MS experiments
(Hladik& Calhoun, 2012). The most significant peak at 9.313 minutes (58.48% area, m/z 156)
was confirmed to be paraquat dichloride, the active ingredient of the sample. The elution time
and mass spectral characteristics are consistent with what was previously published for paraquat
analyzed via GC-MS (Hernéndez et al., 2013); it can be noted that the base peak of m/z 156 is in
line with GC-MS spectra of paraquat dichloride. A small peak at 11.496 minutes (1.48% area,
base m/z 73) was identified as pentadecanoic acid, a saturated fatty acid typically considered a
late-eluting artifact in environmental and biological samples (specifically Masood et al., 2005).
Overall, the GC-MS profile of the paraquat sample is defined by paraquat dichloride with minor
amounts of siloxanes, hydrocarbons, and fatty acids, indicative of the results previously
described and in full support of the accuracy of the analytical method as it pertains to forensic
and regulatory purposes.

The analysis of the atrazine sample produced a total ion chromatogram with one dominating
peak at 10.475 minutes, representing 100% of the total area and height. The mass spectrum for
the reported retention time showed a base peak at m/z 200 and additional ions corresponding to
(m/z) 215, 229, 173, 145, and 122, consistent with the electron ionization fragmentation of
atrazine (CAS 1912-24-9), a triazine herbicide. The lack of distinct minor peaks suggests that
either the sample is very pure or contained a huge amount of the one major analyzed component.
The retention time and fragmentation pattern for atrazine are consistent with those that have been
reported in the literature. Hladik and Calhoun (2012) contain reports of atrazine having elution
times of 5-11.5 min, with a base peak both found at m/z 200. The lack of matrix peaks and
degradation products is again in keeping with the results of high purity standards or a very well

cleaned environmental sample (Kruve et al., 2008).
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4. Conclusion

Herbicides also play a crucial role in forensic examinations in cases of contamination, negligence
or intentional poisoning and violations of regulatory limits. As demonstrated in this case, Gas
Chromatography - Triple Quadrupole Mass Spectrometry (GC-QQQ-MS) is a solid and robust
analytical technique for definitive identification and quantification of herbicides and herbicide

components from complex matrices, such as soil or water or biological tissues.

In Multiple Reaction Monitoring (MRM) mode, GC-QQQ-MS was able to accurately identify
and quantify trace amounts of herbicides and their degradation products with a lower level of
interference from matrix components. The ability to target and quantify multiple herbicides helps
increase the overall speed and reliability of forensic casework, which is critical in forensic

investigations.

The analytical approach was evaluated for method validation, linearity, accuracy, precision, and
limit of detection and was evaluated to be conforming to forensic standards. The findings suggest
that GC-QQQ-MS can be employed reliably to analyze herbicide compounds, provided that

appropriate sample preparation and derivatization are conducted.

In summary, GC-QQQ-MS is an important analytical technique in forensic toxicology for
herbicide analysis. It provides an important balance between analytical sensitivity and forensic
reliability, and is thus appropriate for investigations involving high consequences with regard to

herbicides.

5. Scope of future work

Future work will need to develop herbicide databases and libraries to improve identification
reliability and increase the utility of herbicides for forensic purposes. Liquid Chromatography
Triple Quadrupole Mass Spectrometry (LC-QQQ-MS), used in tandem with GC-QQQ-MS, may
be able to deliver a complete spectrum of herbicides and ultimately allow for complete analysis
in one forensic pathway. Forensic sample collection, sample preparation, derivatization, and
instrument parameters should be developed as forensic protocols for sample collection to
accommodate for variability among forensic laboratories. Utilizing specific tailored extraction
methodologies related to matrices for example blood, urine, liver, soil, and plants would be

advantageous for efficiency and improving signal over noise. The transition towards automation
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and high through put will help alleviate waiting list concerns in major forensic investigations and
environmental stewardship. Having a centralized forensic database, perhaps with case studies of
herbicide cases assessed with GC-QQQ-MS, that is available for future investigatory purposes
and access to litigious cases would be useful. Conducting more studies on the toxicokinetics of
the species exposed to herbicides (human and animal), ADME (absorption, distribution,
metabolism, and excretion) studies to understand residue patterns will be beneficial for

ascertaining forensic report results.
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