Gamma-medial BKU-algebras

S. M.Mostafa*1, Amany M. menshawy2, Ola Wageeh Abd El – Baseer3

1,2,3Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt.

Abstract. In this paper, we introduce new algebraic structures, called a Γ -BKU-algebras, which is a generalization of a KU- algebras and discuss the basic properties of Γ -BKU-algebras, Moreover, the notion of medial Γ -BKU-algebras is introduced. Several theorems are stated and proved. The image and pre-image of medial - Γ -ideals are defined and how the homomorphic images and pre-images of medial - Γ ideals become medial - Γ -ideals in Γ -BKU-algebras is studied as well. Finally, we construct some algorithms applied to Γ -medial-ideal in Γ -BKU-algebras .

2010 Mathematics Subject Classification: 06F35; 20N02.

Keywords: Γ -BKU-algebra, medial Γ -BKU –algebras, image and pre-image medial - Γ -ideals

1. Introduction

The notion of BCK-algebras was proposed by Iseki [2] in 1966. In [3], Iseki introduced the notion of a BCI-algebra which is a generalization of BCK-algebra. Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK / BCI-algebras and their relationship with other structures including lattices and Boolean algebras. There is a great deal of literature which has been produced on the theory of BCK/BCI-algebras, in particular, emphasis seems to have been put on the ideal theory of BCK/BCI-algebras. For the general development of BCK/BCI-algebras the ideal theory plays an important role. In [5] J.Meng and Y.B.Jun studied medial BCI-algebras. In [6] S.M.Mostafa, Y.B.Jun and EL-menshawy introduce the notion of medial ideals in BCI-algebras, they state the fuzzification of medial ideals and investigate its properties.

In [1,4,7,8 ,9 ,10] four classes of new algebraic structures which are called KU/PKU/KK/PU –algebras are introduced. It is known that the class of KU-algebras is a proper subclass of the class of PKU/KK/PU-algebras.

In this paper ,we introduce new algebraic structures, called a Γ -BKU-algebra, which is a generalization of a KU- algebra and discuss the basic properties of Γ -BKU-algebras, Moreover, the notion of medial Γ -BKU -algebras is introduced. Several theorems are stated and proved. The image and pre-image of medial - Γ -ideals are defined and how the homomorphic images and pre-images of medial - Γ ideals become medial - Γ -ideals in Γ -BKU-algebras is studied as well. Finally, we construct some algorithms applied to Γ -medial-ideal in Γ -BKU-algebras.

2. Preliminaries

First, we recall certain definitions from [1,4,7,8,9,10] that are required in the paper

Definition 2.1. Let (X; *, 0) be a set with a binary operation (*) and a constant (0).

Then (X; *, 0) is called a KU-algebra if it satisfies the following axioms:

For all x, y, $z \in X$,

(KU-1)
$$(x*y)*((y*z)*(x*z))=0$$
,

$$(KU-2)$$
 $x*0=0$,

(KU-3)
$$0 * x = x$$
,

(KU-4)
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$.

In a KU-algebra X, we define a binary relation (\leq) by putting $x \leq y$ if and only if y * x = 0.

Remark.2.2 Let X be a nonempty set with a binary relation (\leq) on X and a fixed element (0) of X. Then X is a KU-algebra if and only if satisfies that: for all $x, y, z \in X$,

(KU-1')
$$(y*z)*(x*z) \le (x*y)$$
,

$$(KU-2')$$
 $0 \le x$,

(KU-3')
$$x \le y$$
 and $y \le x$ implies $x = y$,

(KU-4')
$$x \le y$$
 if and only if $y * x = 0$ imply $x = y$.

Form now on, for any KU-algebra (X; *, 0), (*) and (\leq) are called a KU-operation and KU-ordering on X respectively .

Example 2.3 .Let $X = \{0, 1, 2, 3, 4\}$ in which (*) be defined by:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	3	4
2	0	1	0	3	4
3	0	0	0	0	4
4	0	0	0	0	0

Then (X; *, 0) is a KU-algebra.

Proposition 2.4. Let (X; *, 0) be a KU-algebra, the following hold:

For all $x, y, z \in X$,

1.
$$z*(x*z)=0$$
,

2.
$$x \le y$$
 implies $y * z \le x * z$ and $z * y \le z * x$,

3.
$$z*(y*x) = y*(z*x)$$
,

4.
$$y*((y*x)*x)=0$$
.

Definition 2.5.Let (X; *, 0) be a KU-algebra and I be a nonempty subset of X. I is called a KU-ideal of X if it satisfies:

$$(IKU_1)$$
 $0 \in I$,

(IKU₂)
$$x*(y*z) \in I$$
 and $y \in I$ imply $x*z \in I$, for all $x, y, z \in X$.

Definition 2.6. A **PU**-algebra is a non-empty set X with a constant $0 \in X$ and a binary operation * satisfying the following conditions:

$$(KU-2)$$
 $x*0=0$,

$$(PU-1)(x*z)*(y*z) = y*x \text{ for any } x, y, z \in X.$$

On X we can define a binary relation " \leq " by: $x \leq y$ if and only if y * x = 0.

Example 2.7.Let $X = \{0, 1, 2, 3, 4\}$ in which * is defined by

*	0	1	2	3	4
0	0	1	2	3	4
1	4	0	1	2	3
2	3	4	0	1	2
3	2	3	4	0	1
4	1	2	3	4	0

Then (X, *, 0) is a **PU-algebra.**

Proposition 2.8.In a **PU**-algebra (X, *, 0) the following hold for all $x, y, z \in X$: (a) x * x = 0.

(b)
$$(x * z) * z = x$$
.

(c)
$$x * (y * z) = y * (x * z)$$
.

(d)
$$x * (y * x) = y * 0$$
.

(e)
$$(x * y) * 0 = y * x$$
.

KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 25 ISSUE 9 2025

(f) If $x \le y$, then x * 0 = y * 0.

(g)
$$(x * y) * 0 = (x * z) * (y * z)$$
.

(h) $x * y \le z$ if and only if $z * y \le x$.

(i) $x \le y$ if and only if $y * z \le x * z$.

(j) In a PU-algebra (X, *, 0), the following are equivalent:

(1)
$$x = y$$
, (2) $x * z = y * z$, (3) $z * x = z * y$.

(k) The right and the left cancellation laws hold in X.

(1)
$$(z * x) * (z * y) = x * y$$
,

(m)
$$(x * y) * z = (z * y) * x$$
.

(n)
$$(x * y) * (z * u) = (x * z) * (y * u)$$
 for all x, y, z and $u \in X$.

Definition 2.10 . An algebra $(X, \cdot, 0)$ is called Pseudo KU-algebras (PKU-algebra) or (KK-algebra), if satisfying identities:

(KU-1)
$$(x*y)*((y*z)*(x*z))=0$$
,

(KU-3)
$$0 * x = x$$
,

(KU-4)
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$.

Example 2.11. Let $X = \{0, 1, 2, 3\}$ be a set with binary operations \cdot and * defined as follows:

•	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	0	1	0	2
3	0	1	0	0

*	0	1	2	3
0	0	1	2	3
1	0	0	3	0
2	0	0	0	0
3	0	3	3	0

One can see that $(X, \bullet, 0)$ is a PKU-algebra but not a KU-algebra, but (X, *, 0) is both a KU-algebra and a PKU-algebra.

For elements x and y in a PKU-algebra X, x*y = 0 if and only if $y \le x$. Then (X, \le) is a partial ordered set.

3. Γ -BKU-algebras.

In this section is to introduce the notion of Γ -BKU-algebras.

Definition 3.1. Let X and Γ be any nonempty sets. The structure $(\Gamma, X, 0)$ is called a Γ -BKU –algebra. If there exists a mapping $X \times \Gamma \times X \to X$ written as (x, γ, y) by $y\gamma x$, that satisfies the following condition axioms:

$$(\gamma k u_1) (y\alpha z)\beta[(z\alpha x))\gamma(y\alpha x)] = 0$$
,

$$(\gamma ku_2)$$
 $0\alpha x = x$,

$$(\gamma ku_3)$$
 $x\alpha y = 0$ and $y\alpha x = 0$ implies $x = y$, for all $x, y, z \in X$, $\gamma, \beta, \alpha \in \Gamma$

On a Γ -BKU-algebra $(X, \Gamma, 0)$ we can define a binary relation \leq on X by putting: $x \leq y \Leftrightarrow y \gamma x = 0$.

Then $(\Gamma, X, 0)$ is a Γ -BKU –algebra if and only if it satisfies that :

$$(\gamma k u_1') [(z\alpha x)\beta(y\alpha x)] \leq y\alpha z$$
,

$$(\gamma k u_2')$$
 $0*x=x$,

$$(\gamma k u_3')$$
 $x \le y$ and $y \le x$ implies $x = y$, for all $x, y, z \in X$, $\gamma, \beta, \alpha \in \Gamma$

Example 3.2 Let $M = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$ be nonempty set of binary operations defined below

α	0	a	b	c
0	0	a	b	С
a	0	0	a	c
b	0	0	0	c
С	0	a	b	С

	β	0	a	b	c
	0	0	a	b	c
	a	0	0	a	a
Ī	b	0	a	0	b
	c	0	a	0	0

γ	0	a	b	c
0	0	a	b	c
a	0	0	c	0
b	0	0	0	0
С	0	С	c	0

Clearly M is Γ - BKU –algebra.

Example 3.3. Let $(\Gamma, X, 0)$ be an arbitrary BKU-algebra and Γ any nonempty set. Define a mapping $X \times \Gamma \times X \to X$ by $y\gamma x \to y * x$ for all $x, y, z \in X$ and $\gamma \in \Gamma$. It is easy to see that $(\Gamma, X, 0)$ is Γ - BKU -algebra. Indeed,

$$(\gamma k u_1) (\gamma \alpha z) \beta [(z \alpha x)) \gamma (\gamma \alpha x)] = 0$$

$$(\gamma ku_2)$$
 $0\gamma x = x$,

$$(\gamma ku_3)$$
 $x\gamma y = 0$ and $y\gamma x = 0$ implies $x = y$,

Example 3.4.Let $X = \{0, a, b, c\}$ in which (*) be defined by the following table:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	С

and $\Gamma \neq \Phi$ Define a mapping $X \times \Gamma \times X \to X$ by $b\gamma a = a * b$ for all $a, b, c \in X$ and $\gamma \in \Gamma$. Then X is Γ - BKU –algebra, but X it not BKU –algebra since $0 * a = 0 \neq a$.

Lemma3.5: In Γ - BKU –algebra X , we have ,for all x, y, z \in X, γ , β , $\alpha \in \Gamma$

$$z\alpha(y\beta x) = y\alpha(z\beta x)$$
, for all $x, y, z \in X$ and $\gamma, \beta \in \Gamma$

Proof: From (γku_1) we get $(0\alpha z)\beta[(z\alpha x))\gamma(0\alpha x)] = 0$

, this implies
$$z\beta[(z\alpha x)\gamma(x)] = 0$$
, i.e $[(z\alpha x)\gamma(x)] \le z$ ----- (a)

Making use of (a) and $(\gamma ku_1')$, we get $z\alpha(\gamma\beta x) \leq [(z\alpha x)\alpha x]\beta[\gamma\alpha x] \leq \gamma\alpha(z\beta x)$

Since x, y, $z \in X$, γ , β , $\alpha \in \Gamma$ are arbitrary, interchanging y and z in the above inequality, we obtain $y\alpha(z\beta x) \le z\alpha(y\beta x)$, By (γku_A) , we get $z\alpha(y\beta x) = y\alpha(z\beta x)$.

Lemma 3.6.Let $X \Gamma$ - BKU –algebra, then $y\alpha x = y\beta x$ for any $x, y \in X$ and $\alpha, \beta \in \Gamma$ Proof. Let $x, y \in X$ and $\alpha, \beta \in \Gamma$, then $y\alpha x = y\alpha(0\beta x) = 0\alpha(y\beta x) = y\beta x$

Proposition 3.7 3.3. For any Γ - BKU -algebra X, we have the following properties: For all x, y, $z \in X$, γ , β , $\alpha \in \Gamma$

- (1) $x\gamma x = 0$
- (2) $y\alpha((y\beta x)\gamma x) = 0$
- (3) $x \le y$ implies $yyz \le xyz$ and $zyx \le zyy$

Proof. Let x, y, $z \in X$ and $\gamma, \beta, \alpha \in \Gamma$

- (1) Put in (γBku_1) y=z=0 and using (γBku_2) , we get
- $0 = (0\gamma 0)\gamma[(0\gamma x))\gamma(0\gamma x)] = 0\gamma(x\gamma x) = x\gamma x$
- (2) $y\alpha((y\beta x)\gamma x) = (y\beta x)\alpha(y\gamma x) = (y\gamma x)\alpha(y\gamma x) = 0$
- (3) Since $x \le y$ implies $y\gamma x = 0$, we obtain by $(\gamma Bku_1) (y\gamma x)\gamma[(x\gamma z))\gamma(y\gamma z)] = 0$, hence $0\gamma[(x\gamma z))\gamma(y\gamma z)] = 0$ implies $[(x\gamma z))\gamma(y\gamma z)] = 0$, i.e. $(x\gamma z) \le (y\gamma z)$

Proposition 3.8 3.3. If X is Γ - BKU -algebra, then $(y\alpha x)\gamma 0 = (y\gamma 0)\alpha(x\gamma 0)$ for any $x, y \in X$ and $\alpha, \gamma \in \Gamma$

Proof. Let $x, y \in X$ and $\alpha, \beta, \delta, \gamma, \in \Gamma$, then

$$(y\alpha x)\gamma 0 = (y\alpha x)\gamma((y\beta 0)\delta(y\beta 0)) =$$

 $(y\beta 0)\gamma((y\alpha x)\delta(y\beta 0)) =$

 $(y\beta 0)\gamma(((y\alpha x)\delta(x\gamma(y\beta x))) =$

 $(y\beta 0)\gamma(x\delta((y\alpha x)\gamma(y\beta x))) =$

 $(y\beta 0)\gamma(x\delta 0) = (y\gamma 0)\alpha(x\gamma 0)$

4. Γ-medial BKU-algebra

Definition 4.1. An algebra (X,*,0) of type (2,0) is called a Γ -medial BKU-algebra if it satisfying the following condition: $(x\gamma y)\alpha(z\beta u) = (x\gamma z)\alpha(y\beta u)$, for all x, y, z and $u \in X$ and $\alpha, \beta, \gamma, \in \Gamma$

Lemma.4.2 If *X* is Γ-medial BKU-algebra, then $(x\gamma y) = (y\gamma x)\alpha 0$, for any $x, y \in X$ and $\alpha, \gamma \in \Gamma$

Proof . Let $x, y \in X$ and $\alpha, \gamma \in \Gamma$. Then

$$(x\gamma y) = 0\alpha(x\gamma y) = (y\gamma y)\alpha(x\gamma y) = (y\gamma x)\alpha(y\gamma y) = (y\gamma x)\alpha 0$$

Example 4.3 3.12. Let $X := \{0, 1, 2, 3\}$ be a set with the following table

*	0	1	2	3
0	0	1	2	3
1	2	0	3	1
2	1	3	0	2
3	3	2.	1	0

Define $\Gamma \neq \Phi$ and a mapping $X \times \Gamma \times X \to X$ by $y\gamma x \to y * x$ for all $x, y, z \in X$ and $\gamma \in \Gamma$. It is easy to see that $(\Gamma, X, 0)$ is Γ - medial BKU -algebra.

Example 4.4 3.13. Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following table

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	2	0	1	4	5	3
2	1	2	0	5	3	4
3	3	4	5	0	1	2
4	4	5	3	2	0	1
5	5	3	4	1	2	0

Define $\Gamma \neq \Phi$ and a mapping $X \times \Gamma \times X \to X$ by $y\alpha x \to y * x$ for all $x, y, z \in X$ and $\alpha, \beta, \gamma, \in \Gamma$ It is easy to see that $(\Gamma, X, 0)$ is Γ - BKU –algebra, but not medial Γ - KU – algebra, since $(2\alpha 4)\beta(3\alpha 5) = 3\alpha 5 = 5 \neq (2\alpha 3)\beta(4\alpha 5) = 5\alpha 1 = 3$

Lemma.4.5 If X is Γ -medial-BKU-algebra . Then $(x\alpha y)\gamma z=(z\alpha y)\gamma x$ for any $x,y\in X$ and $\alpha,\beta,\gamma,\in\Gamma$

Proof. Let $x, y \in X$ and $\alpha, \beta, \gamma, \in \Gamma$. Then

 $(x\alpha y)\gamma z = (z\gamma(x\alpha y))\beta 0 = (x\gamma(z\alpha y))\beta 0 = (z\alpha y)\gamma x.$

Lemma.4.6 If *X* is Γ-medial BKU-algebra .Then $(y\alpha x)\gamma x = y$ for any $x, y \in X$ and $\alpha, \beta, \gamma, \in \Gamma$

Proof . Let $x, y \in X$ and $\alpha, \beta, \gamma, \in \Gamma$. Then

$$(y\alpha x)\gamma x = (x\gamma(y\alpha x))\beta 0 = (y\gamma(x\alpha x))\beta 0 = (y\gamma 0)\beta 0 = (0\gamma y) = y$$

Lemma 4.7 If *X* is Γ-medial BKU-algebra .Then $(y\alpha 0)\gamma 0 = y$ for any $x, y \in X$ and $\alpha, \beta, \gamma, \in \Gamma$

Proof. Clear.

Lemma 4.8. If X is Γ -BKU-algebra . X is associative if and only if $x\alpha 0 = x$ for any $x \in X$ and $\alpha, \beta, \gamma, \in \Gamma$

Proof .If X is associative, and then $(x\alpha x)\beta x = x\alpha(x\beta x)$.Which gives $0\beta x = x = x\alpha 0$ for any $x \in X$.

Conversely, assume $x\alpha 0 = x$ for any $x \in X$ and $\alpha, \beta \in \Gamma$. Then

$$(z\alpha y)\beta x = (z\alpha y)\beta(x\alpha 0) = x\beta((z\alpha y)\alpha 0) = x\beta(z\alpha y) = z\beta(x\alpha y) = z\beta(x\alpha(y\alpha 0)) = z\beta(y\alpha(x\alpha 0)) = z\beta(y\alpha x)$$

Thus X is associative.

Lemma 4.9. Every medial Γ -BKU-algebra X satisfies the following property:

$$(y\alpha x)\beta 0 = (y\alpha 0)\beta(x\alpha 0)$$
 for any $x, y \in X$ and $\alpha, \beta, \gamma, \delta \in \Gamma$
Proof. For any $x, y \in X$, we have

$$(y\alpha x)\beta 0 = (y\alpha x)\beta[(y\alpha 0)\delta(y\alpha 0)]$$

- $=(y\alpha 0)\beta[(y\alpha x)\delta(y\alpha 0)]$
- $=(y\alpha 0)\beta[(y\alpha y)\delta(x\alpha 0))$
- $=(y\alpha 0)\beta[0\delta(x\alpha 0)]=(y\alpha 0)\beta(x\alpha 0)$

Corollary 4.10. Every associative Γ - BKU-algebra is medial.

Proof. By Lemma 4.8,
$$x\alpha 0 = x$$
 for any $x \in X$. For any $x, y \in X$, we have $y\alpha x = y\alpha(x\beta 0) = x\alpha(y\beta 0) = (x\alpha y)\beta 0 = (x\alpha y)$.

It follows from Lemma 3.16 that X is a medial Γ -BKU-algebra

Lemma 4.11. A Γ -KU-algebra X is medial if and only if it satisfies one of the following conditions: for any $x, y, z \in X$ and $\alpha, \beta, \gamma, \delta \in \Gamma$

$$x, y \in X$$
 and $\alpha, \beta, \gamma, \delta \in \Gamma$

- (i) $x\alpha y = (y\alpha x)\beta 0$
- (ii) $(z\alpha y)\beta x = (x\alpha y)\beta z$
- (iii) $(y\alpha x)\alpha x = y$
- (iv) $(y\alpha 0)\alpha 0 = y$

Proof .If Γ -BKU -algebra X is medial, then

KRONIKA JOURNAL(ISSN NO-0023:4923) VOLUME 25 ISSUE 9 2025

$$(y\alpha x)\beta 0 = (y\alpha x)\beta(y\alpha y)$$
$$= (y\alpha y)\beta(x\alpha y) = 0\beta(x\alpha y) = (x\alpha y)$$

Let us assume (i) holds in X, then

$$(z\alpha y)\beta x = (x\beta(z\alpha y))\delta 0 = (x\beta(z\alpha y))\delta(x\beta x) = (z\beta(x\alpha y))\delta(z\beta z) = (x\alpha y)\beta z$$
.

Which proves (ii) The condition (ii) implies mediality. Indeed, we have,

$$(x\alpha y)\beta(z\alpha u) = ((z\alpha u)\alpha y)\beta x = ((y\alpha u)\alpha z)\beta x = (x\alpha z)\beta(y\alpha u)$$

i.e
$$(x\alpha y)\beta(z\alpha u) = (x\alpha z)\beta(y\alpha u)$$

Assume (i) hold, then

$$(y\alpha x)\alpha x = ((x\alpha(y\alpha x))\alpha 0 = (y\alpha(x\alpha x))\alpha 0 = (y\alpha 0)\alpha 0 = 0\alpha y = y$$

Hence $(y\alpha x)\alpha x = y$, proving (iii). If we put x := 0 in in (iii) ,then

 $(y\alpha 0)\alpha 0 = y$, which proves (iv). Suppose (iv) holds. Then by Lemma 3.1

$$y\alpha x = ((y\alpha x)\beta 0)\delta 0 = ((y\alpha 0)\beta(x\alpha 0))\delta 0 = (x\beta((y\alpha 0)\beta 0))\delta 0 = (x\alpha y)\beta 0$$

Hence $y\alpha x = (x\alpha y)\beta 0$, which completes the proof.

Definition 4.12. A non empty subset M of a medial Γ -BKU-algebra X is said to be a Γ -ideal of X if it satisfies:

$$(\mathbf{M}_1) \ 0 \in M$$
,

(M₂)
$$y\alpha z \in M$$
 and $y \in M$ imply $z \in M$ for all $y, z \in X$ and $\alpha \in \Gamma$

Definition 4.12. A non empty subset M of a medial Γ -BKU-algebra X is said to be a Γ -medial ideal of X if it satisfies:

$$(\mathbf{M}_1) \ 0 \in M$$
,

$$(M_2)$$
 $(x\alpha y)\beta z \in M$ and $z\alpha y \in M$ imply $x \in M$ for all $x, y, z \in X$ and $\alpha, \beta \in \Gamma$

Example 4.13.Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with a binary operation * defined by the following table:

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	0	0	2	2	4	4
2	0	1	0	1	4	5
3	0	0	0	0	4	4
4	4	4	4	4	0	1
5	4	4	4	4	0	0

Define $\Gamma \neq \Phi$ and a mapping $X \times \Gamma \times X \to X$ by $y\alpha x \to y * x$ for all $x, y, z \in X$ and $\alpha, \beta, \gamma, \in \Gamma$ It is easy to see that $(\Gamma, X, 0)$ is Γ - BKU –algebra, we can prove that $(X, \Gamma, 0)$ is a Γ -BKU-algebra and $A = \{0, 1, 2, 3\}$ is a Γ -medial-ideal of X.

Proposition 4.14. Any ideal of a medial Γ -BKU -algebra is a Γ -medial ideal. Proof. Let M be a ideal in a medial Γ -BKU -algebra X, such that $(x\alpha y)\beta z \in M$ and $z\beta y \in M$, for all $x, y, z \in X$, by (Lemma 4.11.(ii)), we have $(z\alpha y)\beta x \in M$, $z\alpha y \in M$. But M is ideal: therefore $x \in M$. Then M is a Γ -medial ideal.

Proposition 3.22. Any Γ - medial ideal of a Γ -BKU-algebra X must be a Γ - ideal but the converse is not true.

Proof .Let M be a Γ - medial ideal of a Γ -BKU-algebra X, such that $(x\alpha y)\beta z \in M$ and $z\alpha y \in M$, for all $x, y, z \in X$ $\alpha, \beta \in \Gamma$, (Lemma4.11.(ii)), we have $(z\alpha y)\beta x \in M$, $z\alpha y \in M$. Then M is Γ -ideal. The last part is shown by the following example

Example 3.23. Let $X = \{0, 1, 2, 3, 4\}$ be a set with a binary operation * defined by the following table:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	1	4
2	0	1	0	3	4
3	0	0	2	0	4
4	0	1	0	3	0

Define $\Gamma \neq \Phi$ and a mapping $X \times \Gamma \times X \to X$ by $y\alpha x \to y * x$ for all $x, y, z \in X$ and $\alpha, \beta \in \Gamma$ It is easy to see that $(\Gamma, X, 0)$ is Γ - BKU –algebra, and $I = \{0,1,3\}$ is Γ - ideal, but not Γ -medial, since $(4\alpha 1)\beta 3 \in I$ and $3\alpha 1 \in I$, but $4 \notin I$.

5. Homomorphism of Γ-BKU-algebras

Definition 5.1. Let $(X, \Gamma, 0)$ and $(Y, \Gamma, 0)$ be BKU-algebras, the mapping $f: (X, \Gamma, 0) \to (Y, \Gamma, 0)$ is called a homomorphism if it satisfying $f(x \alpha y) = f(x) \beta f(y)$ for all $x, y \in X$. The set $\{x \in X \mid f(x) = 0'\}$ is called the Kernel of f denoted by Kerf.

Theorem 5.2.Let $f: (X, \Gamma, 0) \to (Y, \Gamma, 0)$ be a homomorphism of a Γ -BKU-algebra X into a Γ -BKU-algebra Y, then :

- (1) f(0) = 0'.
- (2) f is injective if and only if $Ker f = \{0\}$.

(3) $x \le y$ implies $f(x) \le f(y)$.

Proof: Assume that $f: (X, \Gamma, 0) \to (Y, \Gamma, 0)$ is a Γ -BKU-homomorphism.

- (1) Since 0*0 = 0, then $f(0) = f(0 \alpha 0) = f(0) \beta f(0) = 0'$.
- (2) Suppose that f is injective and $x \in Kerf$. It follows that f(x) = 0. Since f(0) = 0, so f(x) = f(0). By assumption, x = 0. Thus $Kerf = \{0\}$.

Conversely, suppose that $\operatorname{Ker} f = \{0\}$. Let $x, y \in X$ be such that f(x) = f(y). Then we get that $f(x \alpha y) = f(x) \beta f(y) = 0'$ and $f(y \alpha x) = f(y) \beta f(x) = 0'$, thus $x \alpha y$, $y \alpha x \in Kerf$, this means that $x \alpha y = 0 = y \alpha x$. From (Bku_3) , x = y, and shows that f is injective.

(3) Let $x \le y$. It follows that $y \alpha x = 0$. So, from (Theorem 5.2 (1)) implies $f(y) \beta f(x) = f(y\alpha x) = f(0) = 0'$. Hence $f(x) \le f(y)$.

Theorem 5.3.Let $f: (X, \Gamma, 0) \to (Y, \Gamma, 0)$ be a homomorphism of a Γ -BKU-algebra X into a Γ -BKU-algebra Y, then :

- (1) If I is an Γ -ideal of X, then f(I) is an Γ -ideal in Y.
- (2) If J is a Γ ideal in Y, then f^{-1} (J) is a Γ -ideal in X.
- (3) Ker f is Γ -ideal of X.

Proof: Straightforward.

Theorem 3.4.Let $f: (X, \Gamma, 0) \to (Y, \Gamma, 0)$ be a homomorphism of a Γ -BKU-algebra X into a Γ BKU-algebra Y, then :

- (1) If M is Γ medial -ideal of X, then f(M) is an Γ -medial -ideal in Y.
- (2) If J is a Γ medial ideal in Y, then f^{-1} (J) is a Γ medial ideal in X.
- (3) Ker f is a Γ medial -ideal of X.

Proof: (1) Let M be Γ -medial -ideal of X. We see that $0 \in M$, by theorem 5.2(1), $0' = f(0) \in f(M)$ so $0' \in f(M)$ Now, assume that $f((x\alpha y)\beta z) = f(x\alpha y)\beta f(z) = (f(x)\alpha f(y))\beta f(z) \in f(M)$ and $f(z*y) = (f(z)\alpha f(y)) \in f(M)$ it follows that $(x\alpha y)\beta z \in M$ and $z\alpha y \in M$, since M is an Γ -medial-ideal of X, it follows that $x \in M$ imply that $f(x) \in f(M)$ Hence f(M) is Γ -medial-ideal of Y.

(4) Let J be an Γ-medial-ideal of Y. Then 0'∈J, and hence 0= f⁻¹(0') ∈ f⁻¹(J). Now, for any x, y, z ∈ X, let (xαy)βz ∈ f⁻¹(J) and (zαy) ∈ f⁻¹(J)
It follows that f((xαy)βz) = f(xεy)βf(z) = (f(x)αf(y))βf(z) ∈ J and f(zαy) = f(z)αf(y) ∈ J. Since J is an medial-ideal of Y, we obtain that f(x) ∈ J. Consequently x ∈ f⁻¹(J), proving that f⁻¹(J) is an Γ-medial-ideal of X.
(5) It is clear that Ker f ⊆ X. Since f(0) = 0', so 0 ∈ Ker f. For any x, y, z ∈ X, let (xαy)βz ∈ Kerf and zαy ∈ Kerf. Then f((xαy)βz) = f(xαy)βf(z) = (f(x)αf(y))βf(z) = 0 and f(zαy) = f(z)αf(y) = 0, which implies that f(x) = 0, i.e. x ∈ Kerf. Therefore Kerf is a Γ-medial-ideal of X.

Acknowledgement

The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions

Conclusion.

We have studied the medial Γ - BKU-algebras. Also we discussed few results of medial Γ -ideal in Γ -BKU-algebras. The image and the pre- image of medial Γ -ideal in Γ - BKU-algebras under homomorphism are defined and how the image and the pre-image of medial Γ -ideal in Γ -BKU-algebras become medial Γ -ideal are studied. Moreover, the medial Γ -ideal is established. Furthermore, we construct some algorithms applied to medial Γ -ideal in Γ - BKU-algebras.

The main purpose of our future work is to investigate the fuzzy foldedness of medial Γ -ideal in Γ -BKU-algebras, cubic medial Γ -ideal, hyper Γ - BKU-algebras.

appendix

This appendix contains all necessary algorithms

```
A: Algorithm for \Gamma-BKU-algebras
Input (X set, \Gamma:set of binary operations)
Output ( X is a \Gamma-BKU-algebra or not")
Begin
If X = \Phi then go to (1.);
EndIf
If 0 \notin X then go to (1.);
EndIf
Stop: =false;
i := 1
While i \le |X| and not (Stop) do
If 0 \alpha x_i \neq x_i \quad \forall \alpha \in \Gamma then
Stop: = true;
EndIf
j := 1
While j \le |X| and not (Stop) do
If z\alpha(y\beta x) \neq y\alpha(z\beta x) \ \forall \alpha, \beta \in \Gamma then
Stop: = true;
EndIf
EndIf
k := 1
```

```
While k \le |X| and not (Stop) do
If (y\alpha z)\beta[(z\alpha x))\gamma(y\alpha x)] \neq 0 \ \forall \alpha, \beta, \gamma \in \Gamma then
Stop: = true;
   EndIf
 EndIf While
EndIf While
EndIf While
If Stop then
Output ("X is not a \Gamma-BKU-algebra")
Else
  Output ("X is a \Gamma-BKU-algebra")
   EndIf
B: Algorithm for medial \Gamma-ideals
Input (X BKU-algebra, M subset of X);
Output ("M is an medial - \Gamma -ideals of X or not");
Begin
If M = \Phi then go to (1.);
End If
If 0 \notin M then go to (1.);
End If
Stop: =false;
i := 1.
While i \le |X| and not (Stop) do
j := 1
While j \le |X| and not (Stop) do
k := 1
While k \le |X| and not (Stop) do
If (x_i \alpha y_i) \beta z_k \in M and z_k \alpha y_i \in M then
If x_i \notin M then
  Stop: = true;
      End If
    End If
  End While
End While
End While
If Stop then
Output ("M is is an medial \Gamma-ideals of X")
(1.) Output ("M is not is an medial \Gamma-ideals of X")
   End If
End
```

References.

- [1] S. Asawasamrit, A. Sudprasert, A structure of KK-algebras and its properties, Int. Journal of Math. Analysis, 6, No. 1 (2012), 1035-1044.
- [2] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1978), 1-26.
- [3] K. Iseki, On BCI-algebras, Math. Sem. Notes 8 (1980) 125-130.
- [4] U. Leerawat, C. Prabpayak, Pseudo KU-algebras and their applications in topology, Global Journal of Pure and Applied Mathematics, 11 (2015), 1793-1801.
- [5] J. Meng and Y.B. Jun, Notes on medial BCI-algebras, Comm. Korean Math. Soc. 8(1) (1993),33-37.
- [6] S. M. Mostafa, Y. B. Jun and A. El-menshawy, Fuzzy medial ideals in BCI-algebras, fuzzy math., vol.7, no.2,1999, pp445-457.
- [7] S.M. Mostafa, M.A.Abd-Elnaby and M.M.Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum, 63(6) (2011) 3139-3149.
- [8]S. M. Mostafa, M. A. Abdel Naby, A. I. Elkabany, New View Of Ideals On PU-Algebra International Journal of Computer Applications (0975 8887) Volume 111 No 4, February 2015
- [9] C.Prabpayak and U.Leerawat, On ideals and congruence in KU-algebras, scientia Magna Journal, 5(1) (2009), 54-57.
- [10] C.Prabpayak and U.Leerawat, On isomorphisms of KU-algebras, scientiamagna journal, 5(3) (2009) 25-31.
- [11] N.Yaqoob, S.M.Mostafa and M.A.Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebra, (2013) Article ID935905, 10 page.